ВЫСОКОМОЛЕКУЛЯРНЫЕ СОЕДИНЕНИЯ

УДК 541 (64 + 183.12)

МЕХАНИЗМ ФАЗОВОГО РАЗДЕЛЕНИЯ В ВОДНО-СОЛЕВЫХ РАСТВОРАХ НЕСТЕХИОМЕТРИЧНЫХ ПОЛИЭЛЕКТРОЛИТНЫХ КОМПЛЕКСОВ

В.А. Изумрудов, Сан Хюн Лим

(кафедра высокомолекулярных соединений)

Изучено поведение водорастворимых нестехиометричных полиэлектролитных комплексов (НПЭК), включающих лиофилизирующий полиметакрилатный анион и блокирующие поли-N-этил-4-винилпиридиниевые катионы в растворах хлористого натрия. Обнаружено, что уменьшение степени полимеризации поликатиона препятствует компактизации комплексных частиц и фазовому разделению. Предложен и обсужден механизм фазового разделения в водно-солевых растворах НПЭК.

В настоящее время создана обширная база данных о поведении и свойствах водорастворимых нестехиометричных полиэлектролитных комплексов (НПЭК), а также развиты подходы к исследованию их растворов [1].

Тем не менее многие важные вопросы, имеющие не только фундаментальное, но и прикладное значение, остаются невыясненными. Так, одно из интереснейших и необычных явлений – фазовое разделение в растворах НПЭК, протекающее обратимо и количественно при весьма незначительном изменении концентрации вводимых простых солей, получило, на наш взгляд, далеко не полное объяснение.

Между тем это свойство растворов НПЭК наряду с их способностью претерпевать обратимое и количественное фазовое разделение в очень узких интервалах изменения pH или состава смеси взаимодействующих полиионов позволяет отнести НПЭК к так называемым «умным» («smart» или «intelligent») полимерам, интерес к которым неуклонно растет [2].

Перспективность использования этих уникальных свойств растворов НПЭК в биотехнологии и медицине очевидна. Так, фазовое разделение в водно-солевых растворах НПЭК было положено в основу разработки саморегулируемой ферментативной системы [3]. Этот же процесс, вызываемый изменением pH, был использован для получения обратимо-растворимых иммобилизованных ферментов с контролируемыми активностью и стабильностью [4].

Корректная интерпретация фазовых переходов в растворах НПЭК является фундаментальной проблемой, от решения которой во многом зависит дальнейшее продвижение в создании единой теории интерполиэлектролитных реакций. Не менее важен и прикладной аспект этой проблемы, так как общий подход к получению растворов НПЭК с заданными параметрами фазового разделения невозможен без выявления движущих сил и факторов, влияющих на него.

Решению этой задачи применительно к фазовому разделению в водно-солевых растворах НПЭК и посвящена данная работа.

Исследовали НПЭК, образованный флуоресцентно меченным полиметакрилатным (ПМА*) анионом (лиофилизирующий полиэлектролит, ЛПЭ) и поли-N-этил-4-винилпиридиниевыми (ПЭВП) катионами (блокирующий полиэлектролит, БПЭ).

Образец ПМА*, полученный взаимодействием пиренилдиазометана с узкой фракцией полиметакриловой кислоты по методике [5], имел измеренную светорассеянием средневесовую степень полимеризации Pw=1800 и содержал в среднем одну пиренильную группу на 400 метакрилатных звеньев.

Поликатионы ПЭВП получали алкилированием узких фракций поли-4-винилпиридина бромистым этилом [6]. Рассчитанная из ИК-спектров [7] степень алкилирования всех образцов превышала 90%. Использовали ПЭВП с P_w = 100, 250, 350, 550, 900 и 1600, а также фракцию ПЭВП с измеренной эбуллиоскопией среднечисловой степенью полимеризации P_n = 40.

НПЭК заданного состава $\varphi = [БПЭ] / [ЛПЭ] = [ПЭВП] / [ПМА*] (в квадратных скобках указаны молярные концентрации звеньев полиэлектролитов, включенных в НПЭК) готовили по методике, описанной в [8]. Так как все эксперименты проводили в$

0.01М ТРИС-буфере (рН 9.5), практически все карбоксильные группы ПМА* были ионизованы и находились в виде отрицательно заряженных карбоксилатных анионов. Алкилированные пиридиниевые группы ПЭВП независимо от рН раствора были заряжены положительно.

Пиридиниевые группы поликатионов являются эффективными тушителями флуоресценции пиреновых меток ПМА*. Это позволяет исследовать конформационное состояние частиц НПЭК [8] и их диссоциацию [9] в водно-солевых растворах методом флуориметрического титрования. Для этого в кювету с раствором НПЭК последовательно (через каждые 3 мин) добавляли порции титранта (4M NaCl), регистрируя с помощью спектрофлуориметра «Jobin Yvon-3CS» (Франция) интенсивность флуоресценции І при длине волны возбуждения 342 нм и эмиссии 395 нм. Все измерения проводили при непрерывном перемешивании растворов и температуре 25°. Данные представляли в виде зависимости относительной интенсивности флуоресценции *I*/*I*₀ (*I*₀ – интенсивность флуоресценции раствора ПМА* в тех же условиях) от концентрации соли.

Турбидиметрическое титрование растворов НПЭК проводили одновременно с их флуориметрическим титрованием, но при длине волны регистрации 342 нм. Подобный прием позволяет следить за образованием больших частиц, рассеивающих свет. Результаты титрования были представлены в виде зависимостей интенсивности рассеянного света τ или его нормированного значения $\tau/\tau_{\text{макс}}$ (где $\tau_{\text{макс}}$ – максимальное значение интенсивности, достигаемое в процессе титрования) от концентрации титранта.

Седиментационные измерения осуществляли с помощью сканирующей аналитической ультрацентрифуги «Весктал-Е» (США) при температуре 23°. Распределение частиц по ячейке регистрировали измеряя оптическую плотность растворов попеременным сканированием при длинах волн 260 и 345 нм, соответствующих оптическому поглощению звеньев ПЭВП и меток ПМА* (из-за незначительной концентрации меток ПМА* их вклад в поглощение света при 260 нм пренебрежимо мал). Во всех случаях полимерные частицы седиментировали единым фронтом, т.е. представляли собой НПЭК, состав которых совпадал с составом исходной смеси полиэлектролитов. В дальнейшем в опытах по седиментации сканирование проводили при длине волны 345 нм. Из полученных седиментограмм рассчитывали коэффициент седиментации частиц S_c (Св). Данные были представлены в виде зависимости S_c от концентрации соли.

Концентрация карбоксилатных групп ПМА* во всех

растворах, изученных всеми перечисленными методами, была одинаковой и составляла 4·10⁻³ моль/л.

Суммируя накопленные к настоящему времени результаты исследования фазового разделения в водносолевых растворах НПЭК, можно сделать следующие выводы.

1. Фазовое разделение наступает только в том случае, если вводимый низкомолекулярный электролит содержит в качестве одного из компонентов сильно связывающийся с ЛПЭ противоион, и чем выше его аффинность к ЛПЭ, тем при меньшей концентрации соли система становится гетерофазной [10]. Иными словами, именно взаимодействие ЛПЭ–противоион ответственно за фазовое разделение в растворах НПЭК.

2. Фазовому разделению предшествует ярко выраженный коллапс частиц НПЭК без изменения их молекулярной массы, что свидетельствует о петлеобразовании свободных участков ЛПЭ под действием вводимой соли [11].

3. Увеличение относительного содержания БПЭ в НПЭК, т.е. рост состава $\varphi = [БПЭ] / [ЛПЭ]$, сопровождается коллапсом частиц НПЭК и приводит к уменьшению критического значения концентрации соли, при котором начинается фазовое разделение [12].

4. Осуществление точечной сшивки полимерных компонентов предотвращает как коллапс НПЭК, так и фазовое разделение в их водно-солевых растворах [13].

5. Ни заметного коллапса, ни фазового разделения не наблюдается и при введении в растворы НПЭК простых солей, диссоциирующих в воде на высокоаффинные противоионы к БПЭ и противоионы, относительно слабо связывающиеся с ЛПЭ [10].

Эти экспериментальные данные свидетельствуют о связи петлеобразования участков цепей ЛПЭ в коллапсирующих комплексных частицах с фазовым разделением в водно-солевых растворах НПЭК. Более того, они позволяют полагать, что именно коллапс НПЭК является причиной фазового перехода, вызывая кардинальную перестройку системы. Как известно [1], при фазовом разделении наблюдается диспропорционирование на два типа комплексов различного состава – растворимые НПЭК, обедненные БПЭ и нерастворимые стехиометричные ($\varphi = 1$) полиэлектролитные комплексы (СПЭК).

В самом деле, коллапс частицы НПЭК в водно-солевом растворе, осуществляющийся путем петлеобразования участков ЛПЭ, неминуемо должен сопровождаться концентрированием заряженных групп ЛПЭ и их противоионов в объеме, занимаемом частицей НПЭК, т.е. возрастанием ионной силы вблизи двутяжных участков собственно интерполиэлектролитного комплекса – фрагментов БПЭ и ЛПЭ, связанных кооперативной системой интерполимерных солевых связей, что должно приводить к уменьшению числа последних.

Таким образом, вводимые в раствор НПЭК низкомолекулярные ионы могут оказывать на состояние двутяжных участков комплекса двоякое воздействие – прямое и опосредованное. Если первое обусловлено увеличением общей ионной силы раствора, то второе, целиком определяемое коллапсом НПЭК, проявляется только в масштабах отдельной комплексной частицы. Оба они приводят к одному результату – уменьшению числа солевых связей в НПЭК.

Иными словами, компактизация частиц НПЭК вызывает дополнительное снижение числа контактов между полиионами. При введении простой соли, способствующей коллапсу частиц НПЭК [11], вклад опосредованного воздействия должен возрастать. Поэтому можно полагать, что фазовое разделение в растворах НПЭК, наступающее при достижении определенной концентрации соли, – это ответ системы на накапливающиеся напряжения. Не исключено, что при этом локальная ионная сила становится сравнимой с теми критическими значениями [NaCl]_{кр}, при которых изза глубокого разрушения последовательностей солевых связей должен происходить отрыв цепи БПЭ от НПЭК [9].

В таких растворах в условиях быстрого и непрерывного обмена макромолекул БПЭ частицами НПЭК [15] устранение возмущающего фактора реализуется через диспропорционирование системы. У одних частиц уничтожение петель происходит путем исчерпывающего заполнения свободных участков ЛПЭ цепями БПЭ, переходящими с других НПЭК. В результате образуются СПЭК, выделяющиеся в осадок, где достигается максимально возможная в этих условиях степень превращения. Однако перевод макромолекул в осадок энтропийно невыгоден, так как сопровождается уменьшением общего числа частиц в системе. Поэтому частицы нерастворимого СПЭК сосуществуют с водорастворимыми НПЭК, у которых «сбрасывание» петель ЛПЭ осуществляется путем ухода части их БПЭ в осадок. По-видимому, этот уход БПЭ, вызывающий «деколлапс» [12] исходных НПЭК состава ϕ_{α} , происходит до тех пор, пока локальная ионная сила в частицах не снизится до значений, позволяющих НПЭК нового состава $\phi < \phi_0$ существовать в растворе с этой концентрацией соли. Совместное действие указанных факторов приводит к установлению равновесного состояния, отвечающего минимуму свободной энергии системы в данных условиях.

Результаты проведенного нами исследования влияния длины цепи блокирующего поликатиона на фазовое разделение в водно-солевых растворах НПЭК согласуются с предложенным выше механизмом его протекания.

На рис.1 приведены кривые турбидиметрического титрования растворов НПЭК(ПМА*–ПЭВП) состава о = [ПЭВП] / [ПМА*] = 0.4, включающим в себя ПЭВП различной степени полимеризации, раствором NaCl. Растворы НПЭК, образованные ПМА* и относительно длинными поликатионами ($P_{\Pi \ni B\Pi} \ge 350$), ведут себя таким же образом, как и изученные ранее системы. Введение в них соли до некоторой критической концентрации [NaCl]* приводит к фазовому разделению (левые ветви кривых 3-6), а дальнейшее ее добавление сопровождается растворением образовавшихся осадков (правые ветви тех же кривых), которое полностью завершается при другой характеристической концентрации, [NaCl]**. Значения [NaCl]* и [NaCl]**, определенные из зависимостей $\tau/\tau_{_{Makc}}$ от концентрации соли, приведены в таблице.

С уменьшением степени полимеризации ПЭВП интервал ионной силы раствора, при котором система гетерофазна, закономерно сужается. Наблюдаемое при

Рис. 1. Кривые турбидиметрического титрования растворов НПЭК(ПМА*–ПЭВП), включающих поликатионы различной степени полимеризации: 100(1), 250(2), 350(3), 550(4), 900(5) и 1600 (6). Состав НПЭК ф=0.4

Значения характеристических концентраций соли, соответствующих началу фазового разделения [NaCl]*, полному растворению [NaCl]** и началу диссоциации комплексных частиц [NaCl]_{кр} в растворах НПЭК(ПМА*–ПЭВП), включающих различные ПЭВП. **φ**=0.4

Р _{пэвп}	[NaCl]*, M	[NaCl]**, M	[NaCl] _{sp} , M
1600	0.15	0.38	0.38
900	0.15	0.37	0.37
550	0.15	0.36	0.37
350	0.15	0.33	0.35
250	_	_	0.34
100	_	_	0.32
40	-	-	0.30

этом уменьшение значений [NaCl]** объясняется тем, что при относительно высоких концентрациях соли осуществляется глубокое разрушение системы внутримолекулярных солевых связей и переход нерастворимых комплексных частиц в раствор [14]. Значение [NaCl]** зависит от числа разрушенных межмакромолекулярных контактов и определяется устойчивостью комплексных частиц в водно-солевых средах, которая в свою очередь понижается с уменьшением длины цепи БПЭ [9]. Последнее следует также из приведенных в таблице величин [NaCl]_{кр}, которые определяли из кривых флуориметрического титрования растворов НПЭК(ПМА*–ПЭВП), как это описано в [9].

Обращает на себя внимание отсутствие фазового разделения в водно-солевых растворах НПЭК, содержащих короткие цепи ПЭВП с $P_{\Pi ЭВ\Pi} = 100$ (рис.1, кривая 1) и 250 (кривая 2). Такое поведение нельзя объяснить разрушением НПЭК при концентрации соли, соответствующей фазовому разделению. Как следует из таблицы, отрыв первой цепи ПЭВП от НПЭК осуществляется при более высоких значениях [NaC1]_{кр} (0.32 и 0.34М). Таким образом, несмотря на то, что такие НПЭК оказываются вполне устойчивыми, их водно-солевые растворы не претерпевают фазового разделения^{*}.

67

Для того чтобы понять причины столь необычного поведения, мы провели седиментационный анализ растворов НПЭК в условиях, предшествующих фазовому разделению. На рис. 2 представлены зависимости S_c макромолекул ПМА* и частиц НПЭК (ПМА*– ПЭВП) состава $\varphi = 0.25$ от концентрации соли. Видно, что в случае $P_{\Pi ЭВ\Pi} \ge 350$ значения S_c комплексных частиц существенно возрастают с ростом ионной силы раствора, причем темп этого прироста заметно опережает темп прироста S_c макромолекул ПМА* аниона (сравни угол наклона кривых 5–7 и кривой *1* на рис. 2). Это свидетельствует о значительном коллапсе частиц НПЭК.

По-другому ведут себя НПЭК с поликатионами $P_{\Pi \Im B \Pi} \leq 250$ (кривые 2–4), т.е. те НПЭК, в водно-солевых растворах которых не наблюдается фазового

Рис. 2. Зависимость коэффициента седиментации ПМА*(1) и НПЭК(ПМА*–ПЭВП), включающих ПЭВП с различными степенями полимеризации P_{пэвп} (2–7), от концентрации соли. P_{пэвп}= 40(2), 100(3), 250(4), 350(5), 550(6) и 900(7). φ=0.25

^{*} Этот эффект был впервые обнаружен Д.В.Пергушовым, Химфак МГУ.

разделения (рис.1, кривые 1 и 2). Их частицы проявляют тенденцию к замедлению роста S_c с ростом концентрации соли. Особенно ярко это выражено для НПЭК с цепями $P_{\Pi \ni B\Pi} = 40$ (рис. 2, кривая 2). Этот факт отражает уменьшающуюся склонность таких НПЭК к коллапсу, а в случае совсем коротких цепей БПЭ даже сбрасывание петель ЛПЭ. Последнее следует из сравнения угла наклона участков кривых 2 и 1 при [NaCl] ≥ 0.1 М, который заметно меньше в случае НПЭК (кривая 2).

Для того, чтобы объяснить наблюдаемые изменения конформационного состояния комплексных частиц в водно-солевых средах, рассмотрим их движущую силу и факторы,которые могут способствовать или препятствовать коллапсу НПЭК.

На наш взгляд, петлеобразование ЛПЭ в коллапсирующей частице НПЭК является естественным следствием интерполиэлектролитной реакции обмена, осуществляющейся в пределах одной частицы НПЭК.

В самом деле, известно, что в водно-солевых растворах частицы НПЭК непрерывно обмениваются цепями БПЭ. Этот процесс имеет энтропийную природу, его движущей силой является перебор комбинаций с заменой одних солевых связей на другие, а сам обмен можно рассматривать как форму теплового движения в растворах противоположно заряженных полиионов [15]. Обмен осуществляется через столкновение двух одноименно заряженных клубков НПЭК, взаимопроникновение их друг в друга с образованием объединенного клубка, переход БПЭ на соседнюю частицу НПЭК и разделение клубков НПЭК нового состава в пространстве. Переход БПЭ на другой НПЭК носит сугубо вероятностный характер и определяется тем, произойдет ли за время жизни объединенного клубка переброс более половины звеньев цепи БПЭ с одного ЛПЭ на другой. Так как время жизни объединенных клубков весьма мало, а сегментальная подвижность полиионов относительно невелика, результативность столкновений оказывается низкой, а объединенные клубки присутствуют в растворе в столь незначительных количествах, что не обнаруживаются экспериментально [15].

Такой же процесс должен происходить в каждой отдельно взятой частице НПЭК. Однако в этом случае он протекает в объеме с постоянной высокой локальной концентрацией сегментов ЛПЭ, которая определяет гораздо более высокую частоту их столкновений, а значит, и существенно большее число актов переброса части звеньев цепи БПЭ с одного сегмента ЛПЭ на другой. А именно такой переброс и приводит к возникновению петли ЛПЭ. На компактизацию НПЭК влияют следующие факторы:

а) эффективный заряд свободных участков ЛПЭ. Когда он велик, петлеобразование затруднено, так как возникающие петли ПМА* небольшого размера должны быть сильно напряжены из-за взаимного отталкивания одноименно заряженных карбоксилатных групп. Компенсация избыточного заряда ПМА* аниона вводимыми катионами Na+ уменьшает это противодействие и тем самым способствует образованию петель ЛПЭ;

б) дефектность структуры двутяжных участков комплекса. В отсутствие соли или на самых первых этапах ее добавления в раствор НПЭК глубина превращения в интерполиэлектролитной реакции близка к максимальной. Взаимодействие комплементарных молекул ПМА* и ПЭВП (расстояние между зарядами в обеих цепях практически одинаково и в проекции на ось составляет 2.5 Å) должно приводить к преимущественному образованию протяженных кооперативных последовательностей солевых связей с малым числом дефектов. Цепь БПЭ оккупирует сравнительно неболь-

Рис. 3. Зависимость коэффициента седиментации ПМА*(1) и НПЭК(ПМА*–ПЭВП), включающих ПЭВП с различными степенями полимеризации $P_{\text{пэвп}}$ (2–5) от концентрации соли. $P_{\text{пэвп}} = 100(2)$, 250(3), 350(4) и 900(5). $\varphi=0.4$

шой участок макромолекулы ЛПЭ, связываясь с ним по механизму «застегивания молнии». При этом подвижность ее сегментов и звеньев резко ограничивается, что препятствует их взаимодействию с отдаленными участками ЛПЭ и тем самым затрудняет образование петель. По мере разрушения интерполимерных солевых связей вводимыми противоионами число дефектов в двутяжных участках комплекса, а значит, и подвижность БПЭ увеличивается – вероятность петлеобразования возрастает (схема 1):

Схема 1 Петлеобразование ЛПЭ при добавлении соли

в) гидрофобность двутяжных участков комплекса. Гидрофобное взаимодействие двутяжных участков комплекса друг с другом, приводящее к сегрегации блоков БПЭ–ЛПЭ в водной среде [12], должно, в принципе, способствовать петлеобразованию, так как вклад этого дополнительного взаимодействия может в значительной мере компенсировать проигрыш в свободной энергии Гиббса при образовании напряженных петель ЛПЭ (схема 2)

Схема 2 Петлеобразование как результат гидрофобного взаимодействия блоков БПЭ-ЛПЭ в комплексной частице

Это означает, что в условиях, когда гидрофобное взаимодействие велико, «разрезание» БПЭ на более короткие цепи не должно приводить к заметному изменению размеров частицы НПЭК, так как слияние двутяжных блоков в гидрофобную «каплю» или «ядро» способствует самопроизвольному восстановлению ее конформации. По-видимому, именно этим обусловлены весьма небольшие различия в значениях S_c всех изученных НПЭК в 0.05 M NaCL (рис. 2).

При разрушении солевых связей НПЭК вводимым хлористым натрием и ослаблении гидрофобного взаимодействия двутяжных блоков может превалировать противоположная тенденция – стремление системы реализовать энтропийно выгодное равномерное распределение цепей БПЭ по макромолекуле ЛПЭ (схема 2, левая часть рисунка). Эта тенденция должна усиливаться с ростом числа цепей БПЭ в частице НПЭК, т. е. проявляться более ярко для коротких ПЭВП при прочих равных условиях и постоянном составе ϕ .

При дроблении гидрофобной «капли» и разбегании БПЭ по частице НПЭК петля ЛПЭ вынуждена закрепляться на единичной цепи БПЭ. Для коротких БПЭ, длина цепи которых диктует величину петли ЛПЭ, а значит, и ее напряженность это должно еще более снижать вероятность петлеобразования, что, по-видимому, и находит свое отражение в значительном замедлении темпа прироста S_c частиц таких НПЭК при титровании (рис. 2. кривые 3, 4). По-видимому, каждой конкретной концентрации соли должна соответствовать своя степень полимеризации БПЭ, ниже которой петлеобразование ЛПЭ на этой цепи уже невозможно. Хорошим подтверждением тому служит поведение НПЭК, образованного цепями $P_{\Pi \ni B\Pi} = 40$ (рис. 2. кривая 2), частицы которого при [NaCl] ≥ 0.1 М даже сбрасывают петли ЛПЭ.

Рис. 4. Зависимость коэффициента седиментации ПМА*(1) и НПЭК(ПМА*–ПЭВП), включающих ПЭВП со степенями полимеризации 100 (2, 3) и 900 (4, 5), от концентрации соли. φ =0.25 (2, 4) и 0.4 (3, 5)

Увеличение степени заполнения макромолекулы ЛПЭ цепями БПЭ приводит, как это уже отмечалось, к дальнейшему коллапсу НПЭК. Это также следует из более высоких значений S_с частиц НПЭК (ПМА*–ПЭВП) состава $\phi = 0.4$ (рис. 3) по сравнению с частицами НПЭК состава $\phi = 0.25$ (рис. 2). В растворе 0.05М NaCl наблюдаемый при этом рост значений S_c оказывается приблизительно одинаковым для всех НПЭК и составляет в среднем 0.5 Св, что свидетельствует об отсутствии заметного влияния степени полимеризации поликатиона на изменение конформационного состояния частиц НПЭК с изменением их состава. Этот фактор начинает проявляться по мере нарастания концентрации хлорида натрия. Так, в 0.15М NaCl разница в значениях S_c соответствующих НПЭК, включающих длинные цепи поликатиона с $P_{\Pi \ni B\Pi} \ge 350$, превышает 1.2 Св. То же увеличение состава от $\phi = 0.25$ до $\phi = 0.4$ в случае НПЭК с короткими цепями $P_{\Pi \ni B\Pi} \le 250$ вызывает рост φ в среднем лишь на 0.7 Св. Это отчетливо видно из рис. 4, на котором в одном масштабе сведены кривые, полученные для НПЭК составов φ = 0.25 и φ = 0.4, содержащих поликатионы с $P_{\Pi \ni B\Pi}$ = 100 и $P_{\Pi \ni B\Pi}$ = 900.

Таким образом, коллапс частиц НПЭК в растворах соли оказывается тесно связанным с длиной цепи БПЭ. Особенно ярко эта зависимость проявляется при переходе к достаточно коротким цепям, что в исследованной системе соответствует $P_{\Pi \ni B\Pi} \leq 250$. Для таких НПЭК состава $\varphi = 0.4$ по мере добавления соли действие факторов, препятствующих компактизации, становится столь заметным, что вызываемое ими сбрасывание петель ЛПЭ устраняет накапливающиеся возмущения и предохраняет систему от фазового разделения во всем интервале изменения [NaCl] вплоть до диссоциации комплексных частиц.

Работа выполнена при финансовой поддержке РФФИ, код проекта 99-03-33399а.

СПИСОК ЛИТЕРАТУРЫ

- 1. Кабанов В.А. // Высокомолек. соед. 1994. 36. С. 183.
- 2. Галаев И.Ю // Усп. хим. 1995. **64.** С. 505.
- Марголин А.Л., Шерстюк С.Ф., Изумрудов В.А., Швядас В.К., Зезин А.Б., Кабанов В.А., Березин И.В. // ДАН. 1980. 253. С. 1508.
- Margolin A.L., Sherstiuk S.F., Izumrudov V.A., Zezin A.B., Kabanov V.A.// Eur. J. Biochem. 1985. 146. P. 625.
- Краковяк М.Г., Ануфриева Е.В., Скороходов С.С. // Высокомолек. соед. 1969. 11. С. 2499.
- 6. Fuoss R.M., Strauss V.P. // J. Polym. Sci. 1948. 3. P. 246.
- 7. Starodubtzev S.G., Kirsh Yu.E., Kabanov V.A. // Eur. Polym. J. 1977. 10. P. 739.
- Бакеев К.Н., Изумрудов В.А., Зезин А.Б., Кабанов В.А. // Высокомолек. соед. 1987. 29. С. 424.
- Пергушов Д.В., Изумрудов В.А., Зезин А.Б., Кабанов В.А. // Высокомолек. соед. 1995. 37. С. 1.

- Пергушов Д.В., Изумрудов В.А., Зезин А.Б., Кабанов В.А. // Высокомолек. соед. 1993. 35. С. 844.
- Изумрудов В.А., Харенко О.А., Харенко А.В., Гуляева Ж.Г., Касаикин В.А., Зезин А.Б., Кабанов В.А. // Высокомолек. соед. 1980. 22. С. 692.
- 12. Харенко О.А., Харенко А.В., Касаикин В.А., Зезин А.Б., Кабанов В.А. // Высокомолек. соед. 1979. **21.** С. 2726.
- 13. Кабанов В.А., Зезин А.Б., Рогачева В.Б., Изумрудов В.А., Рыжиков С.В. // ДАН. 1982. **262.** С. 1419.
- Гуляева Ж.Г., Алдошина И.В., Зансохова М.Ф., Рогачева В.Б., Зезин А.Б., Кабанов В.А. // Высокомолек.соед. 1990. 32. С. 776.
- 15. Bakeev K.N., Izumrudov V.A., Kuchanov S.I., Zezin A.B., Kabanov V.A. // Macromolecules. 1992. **25.** P. 4249.

Поступила в редакцию 24.06.97