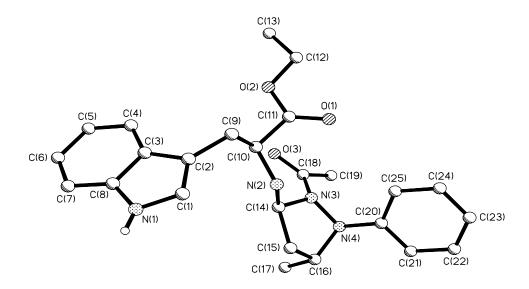
УДК 547.772.2; 539.26; 547.466

СТРУКТУРА ЭТИЛ 2-(1'-АЦЕТИЛ-3'-МЕТИЛ-2'-ФЕНИЛПИРАЗО-ЛИДИН-5'-ИЛ)АМИНО-3-ИНДОЛИЛ-3-ПРОПИОНАТА

Л.А. Свиридова, Г.К. Вертелов, В.В. Нестеров, М.Ю. Антипин*


(кафедра органической химии; svirid@org.chem.msu.su)

Взаимодействие рац-транс-1-ацетил-3-метил-2-фенил-5-гидроксипиразолидина с этиловым эфиром L(S)-триптофана приводит к образованию этил 2-(1'-ацетил-3'-метил-2'-фенилпиразолидин-5'-ил)амино-3-индолил-3-пропионата в виде двух диастереомерных продуктов. Выделен новый оптически активный изомер N(3R, 5S)-пиразолидинил L-триптофана

Ранее сообщалось [1], что при взаимодействии 1-ацетил-2-фенил-5-гидроксипиразолидинов с эфирами α-аминокислот происходит нуклеофильное замещение гидроксильной группы с образованием 1-ацетил-2-фенил-5-(α-карбалкоксиметиламино)пиразолидинов. Среди прочих были получены и производные как D,L-, так и L-триптофана - соответствующие этил 2-(1'-ацетил-3'-метил-2'-фенилпиразолидин-5-'ил)амино-3-индолил-3-пропионаты. Аминокислотные производные 3,5-дизамещенных пиразолидинов имеют три хиральных атома углерода и могут давать для рацемической аминокислоты восемь, а в случае L-триптофана - четыре оптических изомера 2. Мы показали [1], что при использовании в этом превращении рацемического транс-1-ацетил-3-метил-2-фенил-5-гидроксипиразолидина 1 и D,L-триптофана можно выделить один из рацематов, преобладающий в смеси, а для этилового

эфира L(S)-триптофана — индивидуальный оптический изомер *транс*-строения **2** (один из энантиомеров этого рацемата), который был очищен переосаждением из метанола эфиром. По данным ЯМР 1 Н в реакционной смеси остается второй *транс*-диастереомер (соотношение изомеров в растворе \sim 3:1), очистить его пока не удалось.

Поскольку производные триптофана известны своей высокой биологической активностью (многие из них являются предшественниками в синтезах алкалоидов [2]), необходимо определить конфигурацию выделенного в работе [1] индивидуального изомера, оптимизировав его получение. Рентгеноструктурное исследование позволило установить строение соединения 2 (рисунок) как этил (2S, 3'R, 5'S)-2-(1'-ацетил-3'-метил-2'-фенилпиразолидин-5"-ил)-амино-3-индолил-3-пропионат, принимая во внимание, что

Молекулярная структура и нумерация атомов для соединения 2 (нумерация атомов не соответствует номенклатуре ИЮПАК)

-

^{*} Институт элементоорганических соединений им. А.Н. Несмеянова, РАН, 117813 Москва, Россия, Факс: (095)135 5085.

хиральный центр аминокислотного остатка не затрагивается в реакции и его структура известна. Таким образом, пиразолидиновый цикл действительно имеет *таки* мето имент мето и мето образом, пиразолидинов (3R, 5S), как и большинство других функциональных производных пиразолидинов [3].

Введение в реакцию метилового эфира L(S)-триптофана также приводит к образованию смеси двух диастереомеров (соотношение 1:1), однако перекристаллизация продуктов реакции приводит лишь к незначительному увеличению содержания одного из диастереомеров в смеси.

Экспериментальная часть

Исходные *транс*-1-ацетил-3-метил-2-фенил-5-гидроксипиразолидин и этиловый эфир L-триптофана получали по описанным ранее методикам [1]. Спектры ЯМР ¹Н измерены на приборе "Varian VXR-400" в растворах CDCl₃. Удельное оптическое вращение измеряли на поляриметре "ВНИЭКИПРОДМАШ ЕПО 1А" в этиловом спирте. Кристаллы соединения **2**, выращенные в смеси метанол—абсолютный эфир (10:1), триклинные. При 163°C: a = 7,717(1) Å, b = 7,757(1) Å, c = 10,127(2) Å, $\alpha = 85,211(4)$ °, $\beta = 82,903(3)$ °, $\gamma = 73,060(3)$ °, V = 574,7(2) Å³, $d_{\text{выч}} = 1,256$ г/см³, Z = 1, пространственная группа Р1.

Параметры ячейки и интенсивности 6034 независимых отражений измерены на дифрактометре SMART 1000 CCD (λ (МоК $_{\alpha}$) = 0,71073 Å (графитовый монохроматор, ω – сканирование с шагом 0,3°, время экспозиции 10 с). Структура расшифрована прямым методом, выявившим все неводородные атомы, и уточнена полноматричным методом наименьших квадратов в анизотропном приближении

Основные длины связей (d) и валентные углы (ω) в молекуле 2

B MOJERNJIE 2			
Связь	d/Å	Угол	ω/град
O(1)-C(11)	1.209(2)	C(11)-O(2)-C(12)	115.8(1)
C(4)–C(5)	1.380(3)	N(2)-C(10)-C(9)	109.8(1)
O(2)-C(11)	1.337(2)	C(8)-N(1)-C(1)	108.9(2)
C(5)-C(6)	1.400(3)	C(11)-C(10)-C(9)	109.1(1)
O(2)-C(12)	1.455(2)	C(14)-N(2)-C(10)	118.2(1)
C(6)–C(7)	1.386(3)	O(1)-C(11)-O(2)	124.1(2)
O(3)-C(18)	1.233(2)	C(18)-N(3)-N(4)	118.8(1)
C(7)–C(8)	1.396(3)	O(1)-C(11)-C(10)	124.4(2)
N(1)-C(8)	1.376(2)	C(18)-N(3)-C(14)	122.3(1)
C(9)-C(10)	1.552(2)	O(2)-C(11)-C(10)	111.5(1)
N(1)-C(1)	1.378(2)	N(4)-N(3)-C(14)	112.6(1)
C(10)-C(11)	1.521(2)	O(2)-C(12)-C(13)	107.7(2)
N(2)-C(14)	1.432(2)	N(3)-N(4)-C(20)	114.2(1)
C(12)-C(13)	1.502(3)	N(2)-C(14)-N(3)	118.3(1)
N(2)-C(10)	1.451(2)	N(3)-N(4)-C(16)	102.8(1)
C(14)-C(15)	1.536(2)	N(2)-C(14)-C(15)	110.9(1)
N(3)-C(18)	1.359(2)	C(20)-N(4)-C(16)	116.4(1)
C(15)-C(16)	1.530(3)	N(3)-C(14)-C(15)	101.3(1)
N(3)-N(4)	1.426(2)	C(2)-C(1)-N(1)	110.4(2)
C(16)-C(17)	1.521(3)	C(16)-C(15)-C(14)	104.3(1)
N(3)-C(14)	1.506(2)	C(1)–C(2)–C(3)	106.0(2)
C(18)-C(19)	1.510(2)	N(4)-C(16)-C(17)	109.7(2)
N(4)-C(20)	1.434(2)	C(1)-C(2)-C(9)	128.8(2)
C(20)-C(25)	1.396(2)	N(4)-C(16)-C(15)	102.9(1)
N(4)-C(16)	1.491(2)	C(3)-C(2)-C(9)	125.1(2)
C(20)-C(21)	1.397(2)	C(17)-C(16)-C(15)	111.9(2)
C(1)–C(2)	1.365(2)	C(4)-C(3)-C(8)	119.2(2)
C(21)-C(22)	1.396(2)	O(3)-C(18)-N(3)	120.5(2)
C(2)–C(3)	1.437(2)	C(4)-C(3)-C(2)	133.2(2)
C(22)-C(23)	1.387(3)	O(3)-C(18)-C(19)	122.8(1)
C(2)-C(9)	1.496(2)	C(8)-C(3)-C(2)	107.6(1)
C(23)-C(24)	1.383(3)	N(3)-C(18)-C(19)	116.7(2)
C(3)-C(4)	1.405(2)	C(5)-C(4)-C(3)	118.8(2)
C(24)–C(25)	1.399(2)	C(25)-C(20)-C(21)	119.6(2)
C(3)–C(8)	1.414(2)	C(4)–C(5)–C(6)	120.9(2)
		C(25)-C(20)-N(4)	122.4(1)
		C(7)-C(6)-C(5)	121.9(2)
		C(21)-C(20)-N(4)	117.8(1)
		C(6)–C(7)–C(8)	117.0(2)
		C(22)-C(21)-C(20)	120.0(2)
		N(1)-C(8)-C(7)	130.8(2)
		C(23)–C(22)–C(21)	120.3(2)
		N(1)-C(8)-C(3)	107.1(2)
		C(24)–C(23)–C(22)	119.7(2)
		C(7)–C(8)–C(3)	122.1(2)
		C(23)–C(24)–C(25)	120.8(2)
		C(2)–C(9)–C(10)	111.7(1)
		C(20)–C(25)–C(24)	119.5(2)
		N(2)-C(10)-C(11)	112.4(1)

для неводородных атомов. Атомы водорода объективно выявлены разностными фурье-синтезами и уточнены изотропно. Окончательные значения факторов расходимости $R_1=0.046$ по 5370 отражениям с $I>2\sigma$ и w $R_2=0.119$ по 6034 отражениям. Все расчеты проведены по программам SAINT [4] и SHELXTL-97 [5] (версия РС). Координаты — эквивалентные изотропные (для H изотропные).

Кроме того, показано, что в молекуле **2** пятичленный гетероцикл находится в конформации конверта, отклонение атома C(16) от плоскости C(14)–C(15)–N(4)–N(3) составляет 0,591 Å. Двугранный угол между плоской частью гетероцикла и плоскостью фенильного заместителя C(20)–C(21)–C(22)–C(23)–C(24)–C(25) равен 73,4°, а торсионные углы C(20)–N(4)–C(16)–C(17), C(18)–N(3)–N(4)–C(20), C(18)–N(3)–C(14)–N(2), равные соответственно 153,6; 73,4; 89,0°, указывают на скрученность данных фрагментов молекулы друг относительно друга.

В кристале соединения **2** атом водорода H(1N) участвует в образовании межмолекулярной водородной связи N(1)–H(N1)...O(3) (x-1;y+1;z) с параметрами O(3)...N(1) 2,991(2), O(3)...H(1N) 2,24(2), N(1)–H(1N) 0,82(2) Å, угол N(1)–H(1N)...O(3) 153(1)°. Остальные геометрические параметры в исследованой молекуле имеют обычные значения [6].

(2S, 3'R, 5'S)-2-(1'-ацетил-3'-метил-2'-фенилпиразолидин-5'ил)амино-3-индолил-3-пропионат (2). Растворили 0,12 г (3 ммоля) NaOH в 0,2 мл воды,

раствор охладили, добавили 20 мл диэтилового эфира и 0,8 г (3 ммоля) хлоргидрата этилового эфира L-триптофана. Смесь перемешивали в течение 15 мин при комнатной температуре, эфирный слой слили и добавили еще 20 мл диэтилового эфира. Объединенные эфирные вытяжки сушили над MgSO₄ при 5° в течение 1 ч. Растворитель упарили до объема 5 мл, к полученному раствору добавили раствор 0,5 г (2 ммоля) рац-транс-1-ацетил-3-метил-2-фенил-5-гидроксипиразолидина в 3 мл хлористого метилена и небольшое количество MgSO₄ (около 0,5 г). Смесь выдерживали трое суток, защищая реакционную колбу от света. После отделения раствора, осадок промыли CH₂Cl₂ растворитель упарили. Твердый остаток растворили в минимальном количестве хлороформа, раствор пропустили через небольшой слой силикагеля (5/40), смывая смесью гексан-этилацетат, 1:1. Фракцию, содержащую изомер 2, упарили досуха. Полученную кристаллическую массу дважды перекристаллизовали из смеси метанола, высаживанием диэтиловым эфиром. Таким образом получили 0,3 г (61% в расчете на (3'R, 5'S)изомер пиразолидина) соединения 2, идентичного полученному ранее [1]. Маточный раствор содержит оба изомера (соотношение изомеров 1:3). Суммарный выход на два изомера 0,9 г (90%). $T_{\rm nn}=154$ °C [Лит. [1]: $T_{\text{пл}} = 154^{\circ} \text{ C}$], величина $[\alpha]_{\text{D}}^{25^{\text{m}}} 14,8^{\circ}$ (с 0,025, EtOH).

Авторы выражают благодарность РФФИ (гранты 00-15-97359 и 99-07-90133) за финансовую поддержку работы.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Свиридова Л.А., Лещева И.Ф., Вертелов Г.К.* // Химия гетероцикл. соединений. 2000. **10.** C. 1335.
- 2. Sundberg R.J. // The Chemistry of Indoles. N.Y., 1970. P. 231.
- 3. Свиридова Л.А., Лещева И.Ф., Мусатов Д.М., Моторина И.А., Бундель Ю.Г.// Химия гетероцикл. соединений. 1994. **4.** С.483
- SMART V5.051, SAINT V5.00, Area detector control and integration software. Bruker AXS Inc. Madison. WI-53719. USA. 1998.
- Sheldrick G.M. / SHELXTL-97 V5.10. Madison. WI-53719. USA. 1997.
- 6. Allen F.H., Kennard O., Watson D.L., Brammer L., Orpen A.G., Taylor R.J.// J. Chem. Soc.. Perkin Trans. 1. 1987. 2. P.1.

Поступила в редакцию 16.06.03.

STRUCTURE OF ETHYL 2-(1'-CETYL-3-METHYL-2-PHENYL-PYRAZOLIDINE-5'-YL)AMINO-3-INDOLYL-3-PROPIONATE

L.A. Sviridova, G.K. Vertelov, V.V. Nesterov, M.Yu. Antipin

Interaction of *rac-trans*-1-acetyl-3-methyl-2-phenyl-5-hydroxypyrazolidine with L(S)-tryptophan ethyl ester lead to formation of two diastereometric ethyl 2-(1'- cetyl-3-methyl-2-phenyl-pyrazolidine-5'-yl)amino-3-indolyl-3-propyonates. New optically active isomer of N(3R,5S)-pyrazolydinyl L-tryptophan was obtained.