

ОТЗЫВ ВЕДУЩЕЙ ОРГАНИЗАЦИИ

на диссертацию Андреева Егора Андреевича «ЭЛЕКТРОХИМИЧЕСКИЙ СЕНСОР НА ОСНОВЕ ПОЛИ(3-АМИНОФЕНИЛБОРНОЙ КИСЛОТЫ) ДЛЯ ОБНАРУЖЕНИЯ МИКРООРГАНИЗМОВ», представленную на соискание ученой степени кандидата химических наук по специальности 03.01.06 - биотехнология (в том числе бионанотехнологии).

Актуальность работы. Сенсоры и сенсорные системы все более проникают в нашу жизнь и востребованы в различных областях науки и техники, в частности, особенно большое применение они находят в клинической диагностике, экологических и медицинских исследованиях. Для достижения высокой чувствительности и селективности сенсоров к биологическим веществам исследователи часто обращаются к реализации в синтетических сенсорных материалах природных рецепторных механизмов распознавания, основанных на специфическом взаимодействии биомолекул с определяемыми веществами. Одновременно, в искусственных рецепторах совершенствуются способы повышения стабильности работы сенсорных материалов и уменьшения их стоимости. Поэтому поиск новых материалов

для высокочувствительных и селективных определений различных веществ является важной и актуальной задачей, на решение которой и направлена диссертационная работа Андреева Е.А.

Объектами исследования в данной работе являются сенсорные материалы на основе замещенного проводящего полимера. Оригинальным подходом является включение группы борной кислоты в состав проводящего полимера, полианилина, что приводит к изменениям его электрохимических свойств при взаимодействии группы борной кислоты с 1,2- или 1,3-цисдиольными фрагментами различных молекул. Для исследуемых методом импеданса объектов автором впервые показано увеличение проводимости поли(3-аминофенилборной кислоты) при взаимодействии фрагмента аналита с борнокислой группой. Это увеличение проводимости используется далее как аналитический сигнал для определения и на его основе предложены новые электрохимические сенсоры для обнаружения как отдельных молекул (глюкоза, галактоза, сорбитол, гидроксикислоты лактата), так и контроля микроорганизмов (на примере плесневых грибов Penicillium chrysogenum) в водной и воздушной средах.

Наряду с фундаментальными исследованиями процессов, ответственных за получение сигнала, проведены положительные практические испытания сенсоров различной конструкции на образцах определяемых веществ. Таким образом актуальность и научная новизна работы, а также и ее практическая значимость не вызывают сомнений.

Структура и содержание диссертации. Диссертация состоит из введения, 8 глав, заключения и списка литературы из 102 ссылок. Общий объем диссертации 118 страниц, включая 67 рисунков и 2 таблицы.

В главах 1-4 диссертации представлен обзор литературы по теме исследования, обсуждается применение борных кислот для создания синтетических рецепторов, электрохимические свойства полианилина и боронат-замещенного полианилина, основы применения спектроскопии

импеданса для исследований, различные подходы к обнаружению микроорганизмов и обоснование проведения диссертационного исследования. В главе 5 обсуждаются экспериментальные методики исследования и материалы. В главах 6-8 диссертации приведены основные экспериментальные данные и проводится их обсуждение.

К числу основных научных и практически значимых новых результатов исследования следует отнести:

- разработанные принципы безреагентного обнаружения микроорганизмов с помощью электрохимического сенсора на основе поли(3-аминофенилборной кислоты), с возможностью различать специфические и неспецифические взаимодействия,
- расчеты констант связывания различных соединений, содержащих 1,2- или 1,3-иис-диольные фрагменты, с поли(3-аминофенилборной кислотой) на основе измерений электрохимического импеданса,
- разработки электрохимических сенсоров, позволяющих обнаружение микроорганизмов (плесневых грибов) в пределах диапазона концентраций, определенных санитарно-эпидемиологическими нормативами.

Следует отметить большой объем проведенной диссертантом экспериментальной работы с использованием как электрохимических, так и структурно-морфологических методов исследований. Данные воспроизводятся и согласуются между собой, так что достоверность результатов работы и основных выводов диссертации не вызывает сомнений.

Содержание работы и выводы достаточно полно отражены в автореферате диссертации. Тематика исследований и полученные результаты соответствуют специальности 03.01.06 - биотехнология (в том числе бионанотехнологии).

Основные результаты диссертации опубликованы в 3 статьях в высокорейтинговых журналах, входящих в перечень ВАК и индексируемых

в Web of Science и Scopus, а также в 9 тезисах докладов, представленных на международных и российских конференциях.

Диссертация хорошо оформлена, написана достаточно хорошим научным языком и логично структурирована. Вместе с тем по работе возникает ряд замечаний и вопросов, которые недостаточно отражены в тексте диссертации:

- 1. Механизм взаимодействия между определяемыми веществами, содержащими в своем составе 1,2- или 1,3-иис-диольные фрагменты с группой борной кислоты в составе проводящего полимера предполагает первичный отклик от взаимодействия на поверхности пленки с последующим возможным проникновением реакционной зоны вглубь полимерного сенсорного материала. Однако, вопросы о времени установления сигнала, его зависимости от толщины полимера, связь между объемной и поверхностной концентрацией аналита не нашли надлежащего обсуждения в тексте диссертации.
- 2. В качестве аналитического сигнала использовали сопротивление полимера, которое «соответствовало диаметру полуокружности в области высоких частот» стр.51. Однако в общепринятой электрохимической терминологии диаметр высокочастотной полуокружности обычно соответствует сопротивлению переноса заряда на одной из границ раздела. Авторы на стр.73 как раз указывают, что элементом эквивалентной схемы, приводящей к полуокружности, в случае проводящих полимеров является «сопротивление полимера R_п на границе полимер | электрод», что означает отнесение полуокружности к внутренней границе проводников.
- 3. Изменения указанного сопротивления (в пределах 1,5-2 кратного изменения при величинах от 2-х до 4-х Ом см²), были невелики при значительном изменении концентрации, что приводит к малой чувствительности. Какова погрешность таких измерений?

4. С чем связан выбор постоянного значения потенциала $E_{dc} = 0.05$ В? Как следует из текста диссертации выбор постоянного значения потенциала $E_{dc} = 0.05$ В при измерениях импеданса был основан на соответствии этого значения потенциалу редокс-перехода эмеральдин/лейкоэмеральдин. Однако это значение соответствует раствору 0.1 М КСl в 0.1 М НСl, в то время как основные измерения были в присутствии фосфатного буфера в другом интервале pH.

Приведенные выше замечания не отражаются на общей положительной оценке диссертационной работы Андреева Е.А., которая представляет законченную научно-исследовательскую работу. Полученные автором результаты являются оригинальными и имеют высокую научную и практическую ценность.

Результаты работы могут быть интересны для практического использования высших учебных заведениях, разработках соответствующих курсов лекций, например, в Московском, Санкт-Петербургском, Воронежском, Казанском государственных университетах, Новосибирском и Томском национальных университетах, представляют ДЛЯ академических институтов РАН, например, физической химии и электрохимии, Федеральный исследовательский центр «Фундаментальные основы биотехнологии», а также для практического применения с целью создания систем экспрессного микробиологического контроля заражения воздуха и водной среды, востребованных в сфере здравоохранения, а также контроля качества на производстве.

Работа соответствует всем требованиям п.9-14, предъявляемым к кандидатским диссертациям, изложенным в «Положении о порядке присуждения ученых степеней», утвержденном Постановлением Правительства Российской Федерации №842 от 24 сентября 2013 г., а ее автор, Андреев Егор Андреевич, заслуживает присуждения ученой степени

кандидата химических наук по специальности 03.01.06 - биотехнология (в том числе бионанотехнологии).

Отзыв о диссертации Е.А.Андреева составлен доктором химических наук, профессором Кондратьевым Вениамином Владимировичем. Работа обсуждена, а отзыв заслушан и одобрен на заседании кафедры электрохимии Санкт-Петербургского государственного университета 05 мая 2017 года, протокол № 3.

Заведующий кафедрой электрохимии ФГБОУ ВО «Санкт-Петербургский государственный университет», доктор химических наук, доцент

Кондратьев Вениамин Владимирович

ФГБОУ ВО

«Санкт-Петербургский государственный университет»

Kliono

199034, г.Санкт-Петербург

Университетская наб.7/9

Телефон +7-921-3374332

e-mail: v.kondratev@spbu.ru

05 мая 2017 г.

СВЕДЕНИЯ О ВЕДУЩЕЙ ОРГАНИЗАЦИИ

По диссертационной работе Андреева Егора Андреевича

«ЭЛЕКТРОХИМИЧЕСКИЙ СЕНСОР НА ОСНОВЕ ПОЛИ(3-АМИНОФЕНИЛБОРНОЙ КИСЛОТЫ) ДЛЯ ОБНАРУЖЕНИЯ

МИКРООРГАНИЗМОВ», представленной на соискание ученой степени кандидата химических наук по специальности 03.01.06 – биотехнология (в том числе бионанотехнологии)

Полное и сокращенное название	Федеральное государственное
ведущей организации	бюджетное образовательное
	учреждение высшего образования
	«Санкт-Петербургский
	государственный университет»
	(СПбГУ)
Почтовый адрес	199034, г. Санкт-Петербург,
	Университетская наб. 7/9
Адрес официального сайта в сети	http://spbu.ru/
«Интернет»	
Телефон	+7 (812) 328-20-00
Адрес электронной почты	rector@spbu.ru
Фамилия, имя, отчество, ученая	Ректор Санкт-Петербургского
степень, ученое звание	государственного университета,
руководителя ведущей	Кропачев Николай Михайлович, доктор
организации и лица, утвердившего	юридических наук, профессор;
отзыв ведущей организации	проректор по научной работе Аплонов
	Сергей Витальевич, доктор геолого-
	минералогических наук, профессор
Фамилия, имя, отчество, лица,	Кондратьев Вениамин Владимирович,
составившего отзыв ведущей	доктор химических наук по

организации, ученая степень, отрасль науки, научные специальности, по которым им защищена диссертация, ученое звание, должность и полное наименование организации, являющейся основным местом его работы

Список основных публикаций работников ведущей организации по теме диссертации за последние 5 лет (не более 15 публикаций)

специальности 02.00.05-электрохимия, заведующий доцент, кафедрой электрохимии Института химии Федерального государственного бюджетного образовательного учреждения образования высшего «Санкт-Петербургский государственный университет»

1. В.В.Кондратьев, В.В.Малев,

С.Н.Елисеева Композитные электродные материалы на основе проводящих полимеров с включениями наноструктур металлов, Обзор, //Успехи химии, 2016, T.85, C. 14-37. 2.A.M. Smolin, N.P. Novoselov, T.A. Babkova, S.N. Eliseeva, V.V. Kondrat'ev Use of composite films based on poly(3,4-ethylenedioxythiophene) with inclusions of palladium nanoparticles in voltammetric sensors for hydrogen peroxide //Journal of Analytical Chemistry, 2015. Vol. 70, № 8. P. 967-973. 3. O.S.Ostroumova, S.S.Efimova, V.V.Malev Modifiers of Membrane Dipole Potentials as Tools for Investigating Ion Channel Formation and Functioning // International Review of Cell and Molecular Biology, V. 315(2015), pp. 245-297. 4. E.G. Tolstopjatova, S.N. Eliseeva, A.O. Nizhegorodova, V.V. Kondratiev Electrochemical Properties of Composite Electrodes, Prepared by Spontaneous Deposition of Manganese Oxide into Poly-3,4ethylendioxythiophene // Electrochimica Acta, 2015. Vol. 173, №

10.P. 40-49

5. E.G. Tolstopjatova, V.V. Kondratiev, S.N. Eliseeva Multi-layer PEDOT:PSS/Pd composite electrodes for hydrazine oxidation // Journal of Solid State Electrochemistry, 2015. Vol. 19, № 10. P. 2951-2959

6. E. G. Tolstopyatova, N. A. Pogulyaichenko, V. V. Kondratiev Synthesis and Electrochemical Properties of Composite Films Based on Poly-3,4-ethylenedioxythiophene with Inclusions of Silver Particles // Russian Journal of Electrochemistry, 2014. Vol. 50, № 6.P. 510-516.

7. E. G. Tolstopyatova, Ya. K. Saidova, A. M. Smolin, N. P. Novoselov, V. V. Kondratiev Synthesis of a water dispersion of the PEDOT:PSS/Pd composite and its use for the fabrication of an electrochemical sensor for hydrazine, Journal of Analytical Chemistry 71 (2016) 195–200.

8. V.V.Malev, O.V.Levin, V.V.Kondratiev Voltammetry of electrodes modified

- Voltammetry of electrodes modified with pristine and composite films; thoretical and experimental aspects // Electrochimica Acta, 2014. Vol. 122, P. 234-246.
- 9. Kondratiev V.V., Babkova T.A., Tolstopjatova E.G. PEDOT-supported Pd nanoparticles as a catalyst for hydrazine oxidation // Journal of Solid State Electrochemistry, 2013. Vol. 17, № 6. P. 1621-1630.
- 9. A.A. Vereshchagin, V.V. Sizov, M.S. Verjuzhskij, S.I. Hrom, A.I. Volkov, J.S. Danilova, M.V. Novozhilova, A. Laaksonen, O.V. Levin, Interaction of amines with electrodes modified by polymeric complexes of Ni with salentype ligands, //Electrochimica Acta, 211 (2016) 726-734.

10. D. A. Bessonova ,V.D. Ivanov // Kinetics of Cupferron Electroreduction on the Dropping Mercury Electrode. Analytical & Bioanalytical Electrochemistry, V. 2 (2014), 195-205. 11. D. A. Bessonova, V.D. Ivanov// Catalytic polarographic wave in the vanadium - cupferron system // Journal of Electroanalytical Chemistry, 759 (2015) 72-76. 12.В.В.Малев, В.В.Кондратьев, А.М.Тимонов Полимермодифицированные электроды. — Санкт-Петербург: Нестор-История, 2012. — 346 C.

«BEPHO»

Проректор по научной работе

Доктор геолого-минералогических наук Leole

Профессор

10 мая 2017 г

С.В. Аплонов