

СМИРНОВА Дарья Васильевна

ГИБРИДНЫЕ БЕЛКИ И КОНЪЮГАТЫ НА ОСНОВЕ ЛЮЦИФЕРАЗЫ СВЕТЛЯКОВ *LUCIOLA MINGRELICA* И ИХ БИОАНАЛИТИЧЕСКОЕ ПРИМЕНЕНИЕ

03.01.04 — биохимия 03.01.06 — биотехнология (в том числе бионанотехнология)

АВТОРЕФЕРАТ диссертации на соискание ученой степени кандидата химических наук

Работа выполнена на кафедре химической энзимологии химического факультета Московского государственного университета имени М. В. Ломоносова

Научный руководитель:

доктор химических наук, профессор Угарова Наталья Николаевна

Официальные оппоненты:

Трофимов Алексей Владиславович

доктор химических наук Федеральное государственное бюджетное учреждение науки Институт биохимической физики им. Н.М. Эмануэля РАН заведующий лабораторией

Франк Людмила Алексеевна

доктор биологических наук Федеральное государственное бюджетное учреждение науки Институт биофизики Сибирского Отделения РАН ведущий научный сотрудник

Ведущая организация:

Федеральное государственное бюджетное учреждение науки Институт Биохимии им. А.Н. Баха РАН

Защита диссертации состоится ___ июня 2015 года в 15 часов на заседании Совета Д 501.001.59 по защите докторских и кандидатских диссертаций по химическим наукам при Московском государственном университете имени М. В. Ломоносова по адресу: 119991, Москва, Ленинские горы, д.1., стр. 11, МГУ, Химический факультет, кафедра химической энзимологии, аудитория 202.

С диссертацией можно ознакомиться в Фундаментальной библиотеке МГУ имени М.В. Ломоносова и на сайте Химического факультета МГУ имени М.В.Ломоносова (http://www.chem.msu.ru).

Автореферат разослан « » апреля 2015 г.

Учёный секретарь диссертационного совета Д 501.001.59, кандидат химических наук

Carry

Сакодынская И.К

Общая характеристика работы

Актуальность работы. В настоящее время актуальной задачей является создание новых биоаналитических высокочувствительных и высокоспецифичных реагентов для определения наноколичеств различных физиологически активных веществ и патогенных микроорганизмов. Одним из способов получения таких реагентов является создание бифункциональных молекул либо генно-инженерными методами, либо методами химической конъюгации. Такие молекулы совмещают в себе высокую чувствительность белка-детектора с высокой селективностью компонента, способного связываться с изучаемой мишенью. Использование люциферазы светляков в качестве белка-детектора обладает рядом преимуществ: высокой чувствительностью регистрации метки вследствие высокого квантового выхода биолюминесцентной реакции (окисление люциферина кислородом воздуха в присутствии ATP и Mg²⁺), низким фоновым сигналом, который определяется стабильностью субстрата и отсутствием люциферазы в анализируемых биологических системах, а также простой процедурой наработки и выделения белка в необходимых количествах. Приоритетным направлением получения бифункциональных молекул на основе люциферазы светляков является экспрессия генно-инженерных конструкций. Среди гибридных белков на основе люциферазы наибольший интерес представляют биотин- и стрептавидин-люциферазы, позволяющие фиксировать молекулу люциферазы на поверхности мишени путем высокоаффинных биотин-стрептавидиновых взаимодействий. В литературе описаны биотинилированные гибридные белки на основе люцифераз светляков P. pyralis и L. lateralis, однако они запатентованы. По получению стрептавидин-люциферазы опубликована лишь одна работа, в которой было показано, что синтезированный гибридный белок обладал низкой биолюминесцентной активностью. В связи с этим актуальной задачей является создание новых генно-инженерных систем для получения биотинилированной люциферазы и стрептавидинлюциферазы с высокой люциферазной и специфической активностью на основе люциферазы светляков Luciola mingrelica.

Целью работы является получение специфических реагентов на основе люциферазы светляков *Luciola mingrelica*, изучение их свойств, и их применение в биоспецифическом анализе. В рамках исследования были поставлены следующие задачи:

- 1) Получение на основе люциферазы светляков *Luciola mingrelica* гибридных белков: биотинилированной люциферазы и стрептавидин-люциферазы, изучение их каталитических и биохимических свойств.
- 2) Применение полученных гибридных белков в биоспецифическом анализе на основе биотинстрептавидиновых взаимодействий на примере гетерогенного иммуноанализа клеток *Salmonella* и гибридизационного анализа специфических фрагментов ДНК клеток *E. coli*.
- 3) Создание новой системы для высокоэффективного биолюминесцентного резонансного переноса энергии (BRET) на основе конъюгатов различных мутантных форм термостабильной лю-

циферазы *Luciola mingrelica* с низкомолекулярным антигеном и конъюгатов красителя Alexa Fluor с антителами.

4) Разработка метода гомогенного иммуноанализа низкомолекулярного антигена (прогестерона) на основе BRET с использованием конъюгатов люцифераза-прогестерон и конъюгатов антител к прогестерону с красителем.

Научная новизна. В ходе выполнения данной работы впервые получены плазмиды, кодирующие гибридные белки люцифераза-биотин-связывающий домен (Luc-bccp-His₆) и люцифераза-стрептавидин: SA-Luc-His₆, SA-Luc-His₆M/G, His₆-SA-Luc, Luc-SA-His₆ с использованием гена высокоактивного и термостабильного мутанта люциферазы светляков Luciola mingrelica. Впервые получен гибридный белок люцифераза Luciola mingrelica - биотин-связывающий домен (Luc-bccp), биотинилированный *in vivo*, обладающий высокой биолюминесцентной активностью и способностью связывать стрептавидин. Установлено, что каталитические свойства, термостабильность и спектры биолюминесценции гибридного белка Luc-bccp и исходной люциферазы идентичны. Впервые получены гибридные белки люцифераза-стрептавидин, для которых показано, что олигомерный состав, люциферазная активность и сродство к биотину зависят от взаимного расположения доменов люциферазы, стрептавидина и His6 последовательности. Установлено, что гибридный белок His₆-SA-Luc образуется преимущественно в тетрамерной форме, обладающей высокой люциферазной активностью и высоким сродством к биотину. Показана эффективность применения полученных гибридных белков в биоспецифическом анализе на основе биотин-стрептавидиновых взаимодействий на примере гетерогенного иммуноанализа клеток Salmonella и гибридизационного анализа специфических фрагментов ДНК клеток E. coli. Разработан метод значительного снижения неспецифической сорбции гибридного белка люцифераза-стрептавидин с использованием плюроника, приводящий к увеличению чувствительности анализа.

Разработан высокоэффективный метод получения конъюгатов люциферазы с прогестероном (Luc-Pg) и антител к прогестерону с красителем Alexa Fluor 610-х (Fl-Ab). Конъюгаты обладают высокой активностью и сохраняют биохимические и физикохимические свойства исходных реагентов. Оптимизирован состав конъюгатов Luc-Pg и Fl-Ab для регистрации высокоэффективного биолюминесцентного резонансного переноса энергии (BRET). Для повышения эффективности регистрации BRET-сигнала методом генетической инженерии получен новый термостабильный мутант люциферазы светляков *Luciola mingrelica* (GLuc) с максимумом биолюминесценции при 550 нм и конъюгаты с прогестероном на его основе. Разработан высокочувствительный метод гомогенного иммуноанализа прогестерона на основе BRET с использованием конъюгатов GLuc-Pg и Fl-Ab. По сравнению с гетерогенным ИФА на основе биолюминесцентного метода детекции с использованием тех же конъюгатов GLuc-Pg, метод на основе BRET позволяет сократить время проведения анализа и обладает меньшей трудоемкостью.

Практическая ценность работы. В результате проведенного исследования разработана методология использования люциферазы светляков L. mingrelica в биоспецифическом анализе. Синтезированы высокоактивные рекомбинантные белки, которые являются перспективными реагентами для создания новых высокочувствительных биоаналитических систем на основе биотин-стрептавидиновых взаимодействий. На ряде примеров показано, что гибридный белок стрептавидин-люцифераза является высокоэффективным реагентом для специфической детекции клеток микроорганизмов на основе биотин-стрептавидиновых взаимодействий как с использованием иммуноанализа, так и с использованием гибридизационного анализа специфических последовательностей ДНК клеток микроорганизмов. Показана высокая эффективность использования люциферазы и ее мутантных форм в качестве донора в биоаналитических системах на основе биолюминесцентного резонансного переноса энергии совместно с флуоресцентными красителями нового поколения в качестве акцепторов, что открывает новые перспективы использования люциферазы для скрининга различных аналитов с высокой пропускной способностью.

Положения, выносимые на защиту:

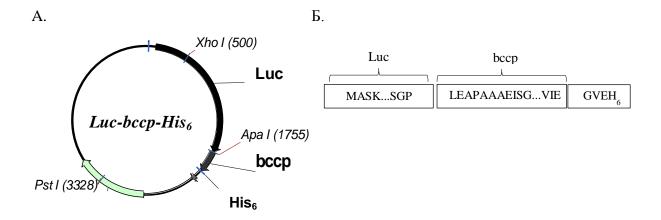
- ✓ Генно-инженерные конструкции, использованные для получения гибридных белков на основе люциферазы светляков *L. mingrelica* с биотин-связывающим доменом (Luc-bccp) и со стрептавидином (Luc-SA), а также результаты по изучению их структуры, физико-химических и биохимических свойств.
- ✓ Методы иммуноанализа клеток Salmonella и детекции ДНК клеток $E.\ coli\ c$ использованием полученных гибридных белков.
- ✓ Получение нового термостабильного мутанта люциферазы *L. mingrelica* (GLuc) с максимумом биолюминесценции в «зеленой» области спектра и результаты по его использованию в качестве донора в биолюминесцентном резонансном переносе энергии на акцептор (краситель).
- ✓ Условия получения химических конъюгатов люциферазы *L. mingrelica* с низкомолекулярными соединениями на примере прогестерона и данные об их составе, стабильности, люциферазной активности и способности связывать антитела.
- ✓ Метод гомогенного иммуноанализа прогестерона на основе биолюминесцентного резонансного переноса энергии с использованием конъюгатов люцифераза-прогестерон и антител к прогестерону с красителем Alexa Fluor 610-х.

Личный вклад автора состоит в формулировке целей и постановке задач исследования, разработке подходов к их решению, выборе объектов и методов, анализе и обобщении полученных результатов, формулировке выводов. Исследования, описанные в диссертации, выполнены автором лично.

Апробация работы. Основные результаты работы были представлены на международных и всероссийских конференциях: VI съезде Российского фотобиологического общества (пос. Шепси, Россия, 2011); VI Московском международном конгрессе "Биотехнология: состояние и

перспективы развития" (Москва, Россия, 2011); 17th International Symposium on Bioluminescence and Chemiluminescence (Гуэльф, Канада, 2012); IV съезде биофизиков России (Нижний Новгород, Россия, 2012); VII Московском международном конгрессе "Биотехнология: состояние и перспективы развития" (Москва, Россия, 2013); 15th JCF Spring Symposium (Берлин, Германия, 2013); международной конференции "Biocatalysis-2013. Fundamentals & Applications" (Москва, Россия, 2013); Chemistry Conference for Young Scientists (ChemCYS 2014), (Бланкенберге, Бельгия, 2014); 16th JCF Spring Symposium (Йена, Германия, 2014 г); VII съезде Российского фотобиологического общества (пос. Шепси, Россия, 2014); 18th International Symposium on Bioluminescence аnd Chemiluminescence (Уппсала, Швеция, 2014).

Публикации. По материалам диссертации опубликовано 13 работ, в том числе 3 статьи в реферируемых научных журналах (входящих в перечень научных изданий, рекомендуемых ВАК РФ) и 10 тезисов докладов на научных конференциях.

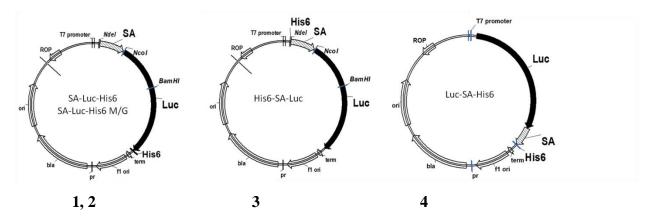

Объем и структура работы. Диссертационная работа состоит из введения, обзора литературы, описания материалов и методов исследования, результатов и их обсуждения (три главы), выводов и списка цитируемой литературы. Диссертационная работа изложена на 140 страницах машинописного текста и содержит 63 рисунка, 19 таблиц и 204 ссылки.

Принятые обозначения: Luc – люцифераза, bccp – биотин-связывающий домен, b – биотин, SA – стрептавидин, Fl – краситель, Pg – прогестерон, Ab – антитело, BSA – бычий сывороточный альбумин, LH₂ – люциферин, λ_{max} – длина волны при которой наблюдается максимум биолюминесценции люциферазы.

Основное содержание диссертационной работы

1. Получение и свойства гибридного белка люциферазы с биотин-связывающим доменом

Гибридные белки люциферазы светляков с биотин-связывающим доменом (bccp) известны для люцифераз *Photinus pyralis* и *Luciola lateralis*. В данной работе была получена плазмида, кодирующая гибридный белок люциферазы светляков *Luciola mingrelica*, содержащий на Сконце дополнительно 87 С-концевых аминокислотных остатков биотин-связывающего домена клеток *E. coli*, которые достаточны для биотинилирования гибридного белка *in vivo*. В качестве люциферазы был использован высокоактивный термостабильный мутант люциферазы светляков *L. mingrelica* (Luc). Фрагменты ДНК, кодирующие ген Luc и ген bccp, выделенный из генома клеток *E. coli* и модифицированный введением сайтов рестрикции Sall и Apal при помощи ПЦР, были субклонированы в экспрессионный вектор рЕТ23b, добавляющий на конце гена bccp Ніs₆ последовательность, которая позволяет проводить очистку белка методом металлохелатной хроматографии. При конструировании гибридного белка стартовый кодон метионина в начале гена bccp был заменен на лейцин, чтобы удалить возможную рамку считывания, а роль подвижного линкера между структурированными частями люциферазы и bccp выполняла последовательность SGPLEAPAAAEISG (Рис. 1Б). Структура полученной плазмиды *Luc-bccp-His*₆, подтвержденная методом секвенирования, показана на Рис. 1А.


Рис. 1. А. Плазмида, кодирующая ген биотинилированной люциферазы. **Б.** Схема аминокислотной последовательности Luc-bccp.

Наработку Luc-bccр проводили в клетках E. $coli\ BL21(DE3)$ и очищали методом металлохелатной хроматографии. Электрофорез целевой фракции Luc-bccp, проведенный в денатурирующих условиях, показал увеличение массы гибридного белка до 75 кДа по сравнению с исходной люциферазой (62 кДа), что соответствует массе bccp-домена, а также подтвердил высокую степень чистоты белкового препарата, полученного в результате очистки. Биолюминесцентная активность гибридного белка составила 60% от активности исходной люциферазы. Уровень экспрессии сохранился на том же уровне, что и у исходной люциферазы (23 \pm 0,5 мг/200 мл среды). Степень биотинилирования Luc-bccp определяли с использованием магнитных частиц, покрытых стрептавидином. Степень биотинилирования составила 60 ± 5 %. Неполное биотинилирование, которое не зависело от добавления экзогенного биотина в среду для экспрессии, можно объяснить высоким уровнем экспрессии гибридного белка и более низким уровнем экспрессии биотинлигазы. Показано, что добавление bccp-домена не повлияло на кинетические характеристики, термостабильность и спектры биолюминесценции люциферазы в составе Luc-bccp.

2. Получение и свойства гибридных белков люциферазы со стрептавидином

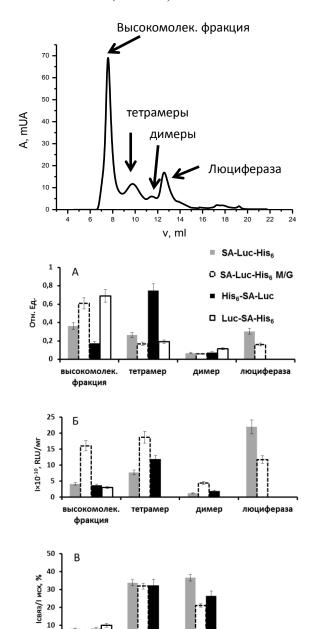
Для получения стрептавидин-люциферазы были сконструированы четыре плазмиды с использованием гена термостабильной люциферазы *L. mingrelica* (Luc) и минимального участка гена стрептавидина (119 ам.о.) *Streptomyces avidinii* (SA). Между двумя генами Luc и SA, были введены последовательности, кодирующие полипептиды *SGGGS* (плазмиды 1-3) и *SGGGGSA* (плазмида 4), которые в данном случае выполняли функцию подвижных линкеров. Плазмиды различались взаимным расположением генов Luc и SA. Так плазмиды 1, 2, 3 кодировали гибриды, в которых домен SA находился на N-конце Luc, а плазмида 4 кодировала гибрид с доменом SA на C-конце Luc. Плазмиды различались так же положением *His*₆ последовательности: плазмиды 1 и 2 содержали *His*₆ на конце гена Luc, а плазмиды 3 и 4 в начале и на конце гена SA соответственно. Плазмиды 1 и 2 отличались тем, что в плазмиде 2 в гене люциферазы стартовый

кодон Met был заменен на Gly во избежание возможной коэкспрессии свободной люциферазы не содержащей стрептавидина. Структуры плазмид, подтвержденные методом секвенирования, показаны на Рис. 2.

Рис. 2. Структуры плазмид, кодирующих гибридные белки люцифераза-стрептавидин. Обозначения: 1-SA-Luc-His₆, 2-SA-Luc-His₆M/G, 3-His₆-SA-Luc, 4-Luc-SA- His₆.

Для получения штаммов-продуцентов клетки *E. coli BL21(DE3)* были трансформированы сконструированными плазмидами. Гибридные белки, синтезированные в результате экспрессии, очищали методом металлохелатной хроматографии. Результаты по активности и экспрессии представлены в Таблице 1.

Свойства очи-	Гибридные белки				Люцифераза
щенных препара- тов	SA-Luc-His ₆	SA-Luc-His ₆ M/G	His ₆ -SA-Luc	Luc-SA-His ₆	Luc
Активность×10 ⁻¹² , RLU/мг	3,2±0,8	2,2±0,2	2,4±0,1	1,0±0,1	6,8±0,1
Выход, мг/200 мл среды	3,8±0,7	2,9±0,2	2,6±0,1	1,9±0,1	22,5±0,3


Таблица 1. Свойства препаратов гибридных белков люцифераза-стрептавидин

Значительное снижение выхода гибридных белков по сравнению с выходом исходной люциферазы (Таблица 1), по-видимому, объясняется токсичным влиянием стрептавидина на клетки *E. coli*. Тем не менее, белки нарабатывались в достаточном для их дальнейшего исследования количестве, и для их экспрессии не требовалось использования шаперонов. Удельные активности препаратов гибридных белков SA-Luc-His₆, SA-Luc-His₆M/G и His₆-SA-Luc составили 30-50% от активности исходной люциферазы и были в два раза выше, чем активность Luc-SA-His₆.

Известно, что стрептавидин может существовать в форме различных олигомеров (димеров, тетрамеров, октамеров), которые могут обладать различным сродством к биотину. Опубликована лишь одна работа, в которой отмечено образование олигомеров гибридного белка стрептавидин-антитело, однако свойства отдельных форм не были изучены. Выяснение взаимосвязи между структурой и свойствами различных олигомерных форм гибридного белка люцифераза-

стрептавидин представляет большой научный и практический интерес, поскольку позволяет выбрать наиболее перспективный продуцент гибридного белка люцифераза-стрептавидин.

Эксклюзионная хроматография очищенных препаратов гибридных белков люциферазастрептавидин (Рис. 3) показала, что препараты содержат несколько форм: мономеры, димеры, тетрамеры и высокомолекулярные олигомеры. Кроме того, препараты гибридных белков, кодируемые плазмидами 1 и 2, содержали свободную люциферазу. Для каждого из четырех препаратов гибридных белков были выделены отдельные формы, и было определено относительное содержание формы (Рис. 4A), удельная люциферазная активность (Рис. 4Б) и способность связывать биотин (Рис. 4B).

высокомолек.

фракция

Рис. 3. Хроматограмма препарата, полученного с использованием плазмиды SA-Luc-His6 M/G. Условия: колонка Superose 12 10/30 GL, скорость потока 0,3 мл/мин, объем пробы 100 мкл, λ =280 нм, подвижная фаза 50 мМ Трис-ацетат, 100 мМ Na_2SO_4 , pH 7,8.

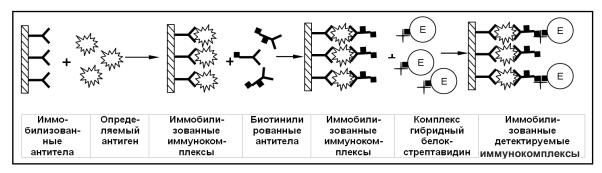
Рис. 4. Характеристики различных форм гибридных белков люцифераза-стрептавидин: А — относительное содержание олигомерной формы в составе белкового препарата; Будельная люциферазная активность, RLU/мг; В — биотин-связывающая способность, %.

люцифераза

Было выявлено, что препараты гибридных белков SA-Luc-His₆M/G и Luc-SA -His₆ преимущественно содержат высокомолекулярные олигомеры, а His₆-SA-Luc – тетрамеры. Для гибридных белков SA-Luc-His₆, His₆-SA-Luc, SA-Luc-His₆M/G максимальной удельной активностью люциферазы обладают тетрамеры, а для Luc-SA-His₆ – высокомолекулярные олигомеры. Максимальной способностью связываться с биотином (биотинилированным БСА) обладают димеры и тетрамеры, а биотин-связывающая способность высокомолекулярных фракций в 4 раза ниже.

Препарат гибридного белка SA-Luc-His₆ содержал около 30% свободной люциферазы, причем именно люцифераза определяла его биолюминесцентную активность. В препарате гибридного белка SA-Luc-His₆ M/G с заменой стартового остатка Меt на Gly содержание свободной люциферазы уменьшилось в 2 раза. В препаратах гибридных белков His₆-SA-Luc и Luc-SA-His₆ Нis₆ был связан с N- или C-концом SA, что позволило с использованием металлохелатной хроматографии отделить гибриды от всех компонентов, не содержащих His₆, в том числе и от свободной люциферазы, если даже она и присутствовала в растворе перед очисткой.

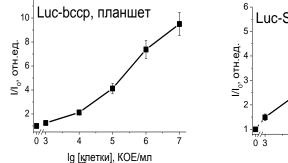
Для тетрамерных форм гибридных белков, обладающих наибольшей биолюминесцентной и биотин-связывающей активностью (Рис. 4Б и Рис. 4В), были получены спектры биолюминесценции, и данные по термостабильности. Показано, что добавление SA домена не повлияло на спектры биолюминесценции, однако снизило термостабильность в два раза.

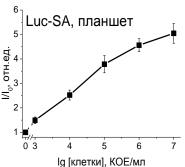

Таким образом, структура плазмиды существенно влияет на соотношение олигомерных форм, а так же на активность люциферазы и стрептавидина в составе гибридного белка. Плазмида *His*₆-*SA-Luc* является оптимальной для экспрессии гибридного белка люциферазастрептавидин, который образуется преимущественно в высокоактивной тетрамерной форме с высоким сродством к биотину, не содержит примесей активной свободной люциферазы и, следовательно, является наиболее перспективным для использования в аналитических системах, основанных на биолюминесцентной детекции.

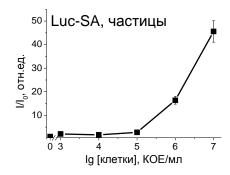
3. Применение гибридных белков Luc-SA и Luc-bccp в биоспецифическом анализе

В биоаналитических системах чувствительность определяется значением фонового сигнала и минимальной детектируемой концентрацией метки, которая определяет величину отклика системы на изменение концентрации аналита. Для определения активности люциферазы была разработана специальная субстратная смесь ATP-LH₂, включающая в себя 0,025 М КН₂РО₄, 0,025 М К₂HPO₄, 2 мМ ЭДТА, 7,5 мМ MgSO₄, 1 мМ ATP, 0,15 мМ LH₂, 1 % Неонол-10, 50 мкМ Nа₄P₂O₇, рН 7,8, которая позволяла наблюдать стабильный во времени биолюминесцентный сигнал, величина которого была пропорциональна концентрации фермента в интервале 10⁻¹³-10⁻⁹ М. Предел обнаружения для гибридных белков Luc-bccp и Luc-SA составлил 100 фМ белка, что обеспечивает высокую чувствительность анализа при использовании люциферазы в качестве метки.

3.1. Специфическая детекция клеток Salmonella с использованием гибридных белков Luc-bccp и Luc-SA


В данной работе с использованием гибридных белков Luc-bccp и Luc-SA был разработан метод специфической детекции микроорганизмов на примере инактивированных клеток Salmonella с использованием схемы двухстадийного сэндвич-анализа (Рис. 5). Образующиеся специфические иммунокомплексы биотинилированных антител с антигеном детектировали либо с использованием гибридного белка Luc-SA, либо нековалентного комплекса Luc-bccp со стрептавидином (Luc-bccp---SA), полученного при оптимальном молярном соотношении реагентов Luc-bccp:SA 1:1.




Рис. 5. Схема детекции клеток *Salmonella* с использованием биотинилированных и небиотинилированных антител и комплекса люцифераза-стрептавидин.

Для получения иммуносорбента мы использовали два метода: физическую сорбцию антител на поверхность полистирольного планшета и химическую иммобилизацию антител, активированных реагентом Траута, на полистирольные частицы (d=240 нм) покрытые плюроником, модифицированным пиридилдисульфидными группами. Преимущества последнего подхода заключались в увеличении рабочей поверхности на два порядка и снижении неспецифических гидрофобных взаимодействий, которое было обусловлено особенностями структуры плюроника. Важно отметить, что при химической иммобилизации антител плюроник выполняет функцию спейсера между антителами и полистиролом, тем самым увеличивает их подвижность в пространстве и доступность для аналита.

Результаты детекции клеток *Salmonella* с использованием комплекса Luc-bccp---SA и гибрида Luc-SA на планшете, а также Luc-SA на частицах представлены на Рис. 6. При проведении анализа на планшете с использованием Luc-bccp---SA и Luc-SA минимально определяемая концентрация клеток составила $5 \cdot 10^4$ и 10^4 KOE/мл соответственно, а при проведении анализа на частицах с использованием Luc-SA – 10^5 KOE/мл.

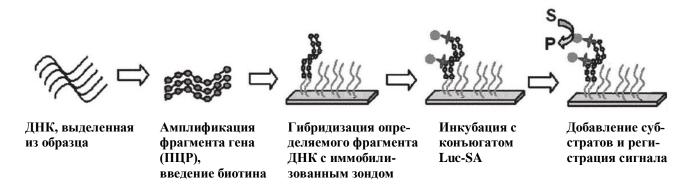
Рис. 6. Зависимость отношения I/I_0 от концентрации клеток *Salmonella* с использованием Luc-SA и Luc-bccp при различных способах получения иммуносорбента: физическая сорбция антител на планшет («планшет») и химическая иммобилизация антител на поверхность частиц («частицы»).

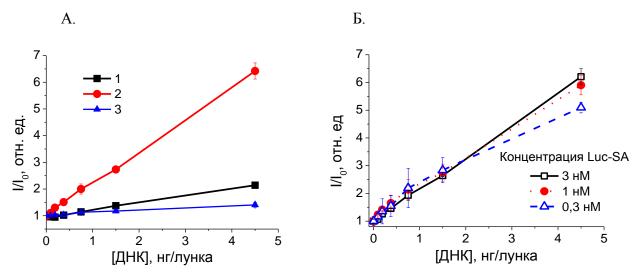
Анализ, проводимый на планшете, с использованием как комплекса Luc-bccp---SA, так и гибрида Luc-SA, обладает сравнимой чувствительностью, тем не менее, применение Luc-SA является приоритетным, так как не требует дополнительного комплексообразования Luc-bccp со свободным SA. Использование полистирольных частиц с химически иммобилизованными антителами способствует значительному увеличению чувствительности при концентрации клеток более $10^5 \, \mathrm{KOE/m}$ л, что объясняется описанными выше преимуществами использования данного иммуносорбента.

На примере разработанного метода показано успешное применение гибридов Luc-bccp и Luc-SA в иммуноанализе микроорганизмов с использованием биотинилированных антител. Чувствительность метода сопоставима с чувствительностью как традиционных иммунометодов с использованием пероксидазы в качестве метки, так и методов на основе люцифераз светляков, в которых предел обнаружения варьируется от 7,3·10⁴ КОЕ/мл до 2,3·10⁷ КОЕ/мл в зависимости от состава селективной среды и природы улавливающего агента. Полученные результаты демонстрируют перспективность использования гибридных белков Luc-bccp и Luc-SA в качестве универсальных реагентов для разработки новых высокочувствительных систем иммуноферметного анализа микроорганизмов с использованием соответствующих биотинилированных антител.

3.2. Гибридизационный анализ ДНК с использованием гибридного белка Luc-SA

Гибридный белок Luc-SA был применен для специфической детекции клеток *E. coli* с использованием метода амплификации фрагмента гена gadB (174 bp) уникального для клеток *E. coli*, кодирующего глутаматдекарбоксилазу. Для внедрения биотина в состав амплифицируемых участков ДНК использовали dUTP-11-биотин. Схема анализа представлена на Рис. 7. Для амплификации специфического участка ДНК, использовали следующие праймеры: прямой-CACGTTTTGGTGCGAAGTCT и обратный- GACGACGAAAATGTCCACAA.




Рис. 7. Схема анализа ДНК с использованием биолюминесцентного метода детекции.

Оптимизация условий детекции амплифицированной ДНК. Согласно литературным данным, основная проблема использования люциферазы светляков в качестве метки в гетерогенном биоанализе заключается в высоком значении фонового сигнала, связанного с неспецифической сорбцией люциферазы на поверхности матрицы. Для достижения максимальной чувствительности анализа мы провели оптимизацию условий его проведения на стадии иммобилизации зонда (концентрация и объем ДНК-зонда) и на стадии инкубации с Luc-SA (концентрация и объем Luc-SA, время и температура инкубации). Были получены зависимости биолюминесцентного сигнала от количества иммобилизуемого зонда (0-20 пмоль/лунка) при различных концентрациях Luc-SA (0,2-10 нМ) в присутствии 40 нг амплифицированной ДНК (70 мкл), либо в ее отсутствие (фоновый сигнал). При концентрации 10 и 3,3 нМ Luc-SA насыщающее количество зонда составило 10 пмоль/лунка, а при концентрации 1 и 0,2 нМ Luc-SA - 2,5 пмоль/лунка. Неспецифическая сорбция, была наиболее высокой при 10 нМ Luc-SA (40 %), при остальных концентрациях не превышала 20%. Увеличение объема иммобилизованного олигонуклеотида от 1 до 30 мкл позволило увеличить специфический сигнал в 6 раз при постоянном фоновом сигнале, что можно объяснить увеличением доступности центров связывания зондов с молекулами комплементарной ДНК и Luc-SA. Для дальнейших экспериментов количество зонда составляло 10 пмоль/лунка в 30 мкл, концентрация Luc-SA - не более 3,3 нМ.

Установлено, что оптимальной температурой инкубации является 37 °C, поскольку равновесие при указанной температуре устанавливается через 1 час, в то время как при 25 °C для этого требуется 90 минут, а при 4 °C – более 90 минут. При этом отношение фонового сигнала (в отсутствие определяемой ДНК) к специфическому составило $17 \pm 2\%$ и не зависело от времени и температуры инкубации. Показано, что увеличение объема Luc-SA от 50 до 150 мкл не влияет на соотношение специфический сигнал:фон.

Для дополнительного снижения неспецифической сорбции, возникающей за счет гидрофобных взаимодействий между молекулами гибридного белка и поверхностью планшета (полистирола), мы использовали обработку раствором BSA-казеин (традиционный блокирующий агент), либо раствором плюроника. Были получены зависимости биолюминесцентного сигнала от концентрации определяемой ДНК при концентрациях 1 и 3 нМ Luc-SA при различных спо-

собах обработки планшета: 1) обработка 1% раствором BSA-казеин после гибридизации, 2) раствором плюроника (10 мг/мл) перед иммобилизацией зонда, 3) раствором плюроника и раствором BSA-казеин.

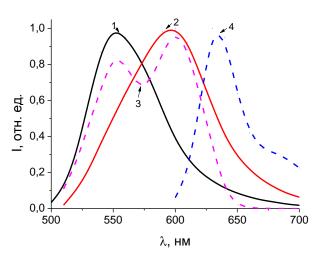
Рис. 8. Зависимость отношения сигнал:фон от количества ДНК. **А.** Использовали полистирольный планшет, обработанный растворами плюроника и BSA-казеин (кривая 1), плюроником (кривая 2), раствором BSA-казеин (кривая 3) при 3 нМ Luc-SA. **Б.** Использовали полистирольный планшет, обработанный плюроником, при 0,3; 1 или 3 нМ Luc-SA.

Показано, что при использовании плюроника фоновый сигнал снизился в 10 раз, что привело к значительному увеличению чувствительности анализа (Рис. 8А), а минимально определяемое количество ДНК составило ~0,4 нг/лунку. Были получены зависимости биолюминесцентного сигнала от концентрации определяемой ДНК при 0,3; 1 или 3 нМ Luc-SA (Рис. 8Б). Максимальной чувствительностью и наиболее широким линейным диапазоном обладала кривая, полученная при концентрации 3 нМ Luc-SA. Таким образом, оптимальным блокирующим агентом является плюроник, который позволил увеличить чувствительность и специфичность анализа за счет минимизации неспецифических взаимодействий между Luc-SA и поверхностью планшета.

В оптимизированных условиях (10 пкмоль зонда/лунка, объем зонда 30 мкл, 3 нМ Luc-SA, объем Luc-SA 100 мкл, инкубация при 37 °C, 1 час) мы сравнили калибровочные кривые, полученные с использованием люциферазной и пероксидазной меток. Для этого использовали конъюгат пероксидазы со стрептавидином. Показано, что методы определения ДНК с использованием колориметрического и биолюминесцентного методов детекции имеют практически одинаковую чувствительность. Тем не менее, использование гибридного белка Luc-SA предпочтительно по сравнению с химическими конъюгатами HRP-SA.

Таким образом, была разработана методика определения ДНК клеток $E.\ coli$ биолюминесцентным методом и показана возможность успешного использования гибридного белка лю-

цифераза-стрептавидин для анализа ДНК. Показано, что обработка полистирольной поверхности плюроником способствует снижению неспецифической сорбции гибридного белка Luc-SA и увеличению чувствительности анализа. В заключение важно отметить, что гибридный белок Luc-SA является эффективным реагентом для специфической детекции клеток микроорганизмов как с использованием иммуноанализа, так и в системах на основе детекции ДНК.


4. Иммуноанализ прогестерона на основе биолюминесцентного резонансного переноса энергии (BRET) с использованием люциферазы светляков Luciola mingrelica

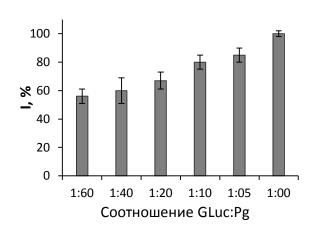
Биолюминесцентный резонансный перенос энергии (BRET) широко используется в биоаналитиеских системах при изучении белок-белковых взаимодействий в условиях in vivo и in vitro. Однако, применение люцифераз светляков в BRET-системах описано лишь в нескольких работах, хотя эти ферменты обладают рядом преимуществ (высокий квантовый выход биолюминесценции, высокая биолюминесцентная активность, термостабильность и доступность, а также свечение в желто-зеленой области спектра) по сравнению с Renilla люциферазой, традиционно используемой в аналитических BRET-системах. В данной работе разработана новая BRET-система на основе люциферазы светляков L. mingrelica, которая была успешно применена в гомогенном иммуноанализе низкомолекулярного антигена, в качестве которого был использован прогестерон. Биоаналитическая система включала термостабильную люциферазу, химически конъюгированную с прогестероном (Luc-Pg, донор), и антитела, ковалентно связанные с красителем (Fl-Ab, акцептор). В отсутствие антител наблюдался спектр биолюминесценции люциферазы. При добавлении окрашенных антител происходило образование специфического комплекса Luc-Pg---Fl-Ab, в котором реализовался BRET. При этом интенсивность биолюминесценции люциферазы уменьшалась, и появлялся спектр флуоресценции красителя. Регистрируемый BRET-сигнал рассчитывали как отношение интенсивности свечения в максимуме спектра флуоресценции акцептора к интенсивности в максимуме спектра биолюминесценции донора.

Для высокой эффективности резонансного переноса энергии в первую очередь необходим высокий квантовый выход донора. Этому требованию всецело отвечает люцифераза светляков L mingrelica, которая, как и другие люциферазы светляков, обладает наиболее высоким квантовым выходом среди биолюминесцентных систем, высокой каталитической активностью и термостабильностью. В качестве донора биолюминесценции были использованы два термостабильных мутанта люциферазы L mingrelica: «красная» форма (RLuc, λ max em = 590 нм) и «зеленая» форма (GLuc, λ max em = 550 нм) (Рис. 9). Новая мутантная форма люциферазы GLuc была получена нами путем введения двух дополнительных мутаций, Y35N и S398M, в структуру RLuc, что привело к смещению максимума биолюминесценции в зеленую область на 40 нм.

При выборе акцептора мы руководствовались следующими критериями: высокий коэффициент экстинкции, высокий квантовый выход флуоресценции, максимальный интеграл пере-

крывания спектра поглощения красителя и биолюминесценции люциферазы. Этим характеристикам удовлетворяет краситель Alexa Fluor 610-х (Рис. 9), который имеет два максимума поглощения при 550 и 610 нм, близкие к максимумам биолюминесценции для GLuc и RLuc соответственно, что обеспечивает оптимальный интеграл перекрывания спектров биолюминесценции обеих форм люциферазы и поглощения красителя, а также обладает высоким коэффициентом экстинкции. Стоит отметить, что данный краситель содержит в своей структуре сульфогруппу, что позволяет проводить конъюгацию с антителами в водной среде.

Рис. 9. Нормированные спектры биолюминесценции люциферазы GLuc (1), RLuc (2); поглощения (3) и флуоресценции (4) красителя Alexa fluor 610-х (λ_{ex} 610 нм).


Анализ спектров биолюминесценции RLuc, GLuc и спектра поглощения красителя показал, что перекрывание спектра биолюминесценции люциферазы со спектром поглощения красителя для GLuc выше, чем для RLuc (83,7 и 78,5 % соответственно). Кроме того, немаловажное значение имеет величина остаточной биолюминесценции донора (фоновый сигнал) в максимуме флуоресценции акцептора. Для RLuc в максимуме флуоресценции акцептора биолюминесцентный сигнал составляет 57% от максимального сигнала, а для GLuc всего 15%. Следовательно, для GLuc фоновая интенсивность биолюминесценции

при 630 нм, почти в 4 раза меньше, чем для RLuc, поэтому использование формы GLuc является более предпочтительным.

4.1. Получение и свойства конъюгатов люцифераза-прогестерон

Получение конъюгатов люцифераза-прогестерон (Luc-Pg) проводили путем взаимодействия аминогрупп люциферазы И карбоксильной группы производного 3-0карбоксиметилоксима прогестерона (3-CHO-Pg), активированной дициклогексилкарбодиимидом и N-гидроксисукцинимидом. Реакцию конъюгации проводили в водноорганической среде, содержащей 10% ДМФА, что обеспечивало растворимость 3-Окарбоксиметилоксима прогестерона и стабильность люциферазы в течение 2 ч проведения реакции при 0 °C. При использовании 0,01 М боратного буфера для конъюгации (рН 8,6) конъюгаты, полученные при соотношении Pg:Luc от 40 до 10, сохраняли всего 10-30% биолюминесцентной активности исходной Luc. Использование 0,01 M буфера PBS (pH =7,8) с добавлением субстрата ATP и MgSO₄ в насыщающих концентрациях (2 мМ ATP, 10 мМ MgSO₄), способствующих предохранению активного центра Luc от химической модификации, позволило увеличить биолюминесцентную активность конъюгатов до 60-80% от активности исходной Luc.

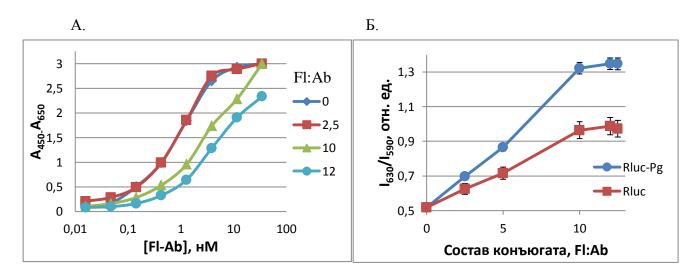
Были синтезированы конъюгаты при различных молярных соотношениях люцифераза:прогестерон (Luc:Pg = 1:5, 1:10, 1:20, 1:40, 1:60) с использованием RLuc и GLuc. Для полученых конъюгатов были проанализированы биолюминесцентная активность и способность Pg к связыванию с антителами. Как показано на Puc. 10, биолюминесцентная активность конъюгатов убывает с возрастанием избытка Pg в реакционной смеси, для RLuc была получена идентичная зависимость.

Рис. 10. Зависимость биолюминесцентной активности конъюгатов GLuc-Pg от соотношения Luc:Pg в реакционной смеси. Условия конъюгации: буферный раствор PBS, 10 мМ MgSO₄, 2 мМ ATP, pH 7,8, 1 мг/мл Luc, 0 °C, 2 ч инкубации.

Рис. 11. Зависимость оптической плотности от концентрации Аb для GLuc-Pg различного состава. Обозначения: 1 - GLuc; 2, 3, 4 - конъюгаты с молярным отношением Luc:Pg 1:5, 1:10, 1:20 в реакционной смеси соответственно.

Способность прогестерона в составе конъюгатов образовывать специфический комплекс с антителами определяли методом гетерогенного ИФА с использованием антивидовых антител, меченых пероксидазой хрена (Ab*-HRP), путем колориметрической детекции специфического комплекса GLuc-Pg---Ab---Ab*-HRP на поверхности полистирольного планшета. Показано, что способность конъюгатов Luc-Pg связываться с антителами возрастает с увеличением отношения Luc:Pg от 1:5 до 1:20 (Рис. 11). Конъюгаты GLuc-Pg и RLuc-Pg, полученные при одинаковом соотношении Luc:Pg в реакционной смеси, обладали идентичной способностью связывать антитела. При увеличении соотношения Luc:Pg от 1:20 до 1:60 способность Luc-Pg связывать антитела не увеличивалась, следовательно уже при соотношении 1:20 все доступные для реакции аминогруппы люциферазы связаны с прогестероном. Анализ спектров поглощения конъюгатов подтвердил, что GLuc-Pg, полученные при соотношении Luc:Pg 1:20, 1:40 и 1:60, имели одинаковый состав и содержали по 3 молекулы прогестерона на одной молекуле люциферазы.

Таким образом, разработанный метод позволил получить конъюгат GLuc-Pg оптимального состава 1:3, который сохранял $\sim 70~\%$ люциферазной активности, обладал высокой способностью связываться с антителами, и высокой стабильностью.


4.2. Получение и свойства конъюгатов антитело-краситель

В работе использовали поликлональные антитела кролика к прогестерону. Конъюгаты антител с красителем получали по реакции взаимодействия аминогрупп антител с сукцинимидным производным красителя Alexa Fluor 610-х (Fl) при молярных соотношениях антитело: краситель от 1:5 до 1:30. Количество молекул красителя, связанных с 1 молекулой антитела ([Fl]/[Ab]), рассчитанное по величине оптической плотности очищенных конъюгатов при 610 нм, $\varepsilon_{\rm Fl}$ =138000 ${\rm M}^{-1}{\rm cm}^{-1}$ (Таблица 2), составило от 2 до 12.

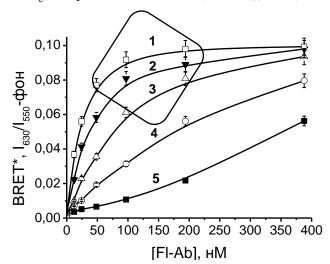
	Молярное соотношение Fl: Аb в реакционной смеси				
	5	10	20	25	30
A_{610}	$1,19 \pm 0,02$	$2,37 \pm 0,02$	$4,77 \pm 0,03$	$5,77 \pm 0,05$	$6,00 \pm 0,05$
[Fl], MM	$43,0 \pm 1,0$	$86,0 \pm 0,9$	173 ± 1	209 ± 2	217 ± 2
[Ab], MM	17,4	17,4	17,4	17,4	17,4
[Fl] /[Ab]	$2,5 \pm 0,05$	$4,9 \pm 0,1$	9,9±0,1	$12,0 \pm 0,1$	$12,5 \pm 0,1$

Таблица 2. Зависимость состава конъюгата Fl-Ab от состава реакционной смеси.

Полученные конъюгаты были проверены на способность связывать прогестерон методом гетерогенного ИФА путем колориметрической детекции специфического комплекса GLuc-Pg--Fl-Ab---Ab*-HRP на поверхности полистирольного планшета.

Рис. 12. А. Способность Fl-Ab связывать Pg в зависимости от состава конъюгата. **Б.** Зависимость BRET-сигнала от состава конъюгата Fl-Ab для RLuc-Pg и RLuc. Условия инкубации: 30 нM RLuc-Pg или RLuc, 300 нM Ab или Fl-Ab.

Как показано на Рис. 12A, специфическая активность конъюгатов состава Fl:Ab более 2:1 заметно снижается. Так для конъюгатов Fl-Ab состава 10:1 связывающая способность уменьшилась почти в два раза. С другой стороны, использование конъюгатов с низким соотношением Fl:Ab приводило к низкому BRET-сигналу. Это было показано в следующем эксперименте: смесь, содержащую RLuc-Pg и Fl-Ab, инкубировали 15 мин при 37 °C в темноте, добавляли


субстратную смесь ATP-LH₂, регистрировали BRET-сигнал (I_{630}/I_{590}). В качестве контроля использовали исходную RLuc люциферазу в той же концентрации. Согласно данным Puc. 12Б, при отношении Fl:Ab 10 и более BRET-сигнал выходит на плато, что можно объяснить максимальным сближением молекул красителя и электронно-возбужденного продукта люциферазной реакции — оксилюциферина. Следовательно, конъюгат Fl-Ab состава 10:1 является оптимальным для регистрации BRET.

Для снижения неспецифической сорбции Fl-Ab на поверхности люциферазы (Рис. 12Б кривая для RLuc) мы оптимизировали состав реакционного буфера, изучив влияние добавок различных концентраций ПАВ (Тритон х-100, поливинилпирролидон, Твин-20, плюроник), а также BSA на величину неспецифического сигнала, и интенсивность биолюминесценции. Показано, что добавление 0,05 % Твина-20 в присутствии 1 % BSA способствовало высокому стабильному биолюминесцентному сигналу с минимальным значением фона.

Таким образом, разработаны методы синтеза конъюгатов люцифераза-прогестерон и антител с красителем Alexa Fluor 610-х, обладающих биолюминесцентной и специфической активностью. Были отобраны конъюгаты RLuc-Pg и Fl-Ab оптимального состава для конструирования BRET-системы.

4.3. Оптимизация условий регистрации BRET-сигнала и анализа прогестерона

Для определения оптимальных условий регистрации BRET-сигнала были получены зависимости величины BRET*-сигнала от концентрации пары донор/акцептор с использованием конъюгата GLuc-Pg состава 1:3 и Fl-Ab состава 10:1. В качестве контроля была использована исходная люцифераза GLuc. Специфический BRET*-сигнал рассчитывали как разность общего BRET-сигнала (I_{630}/I_{550} для I_{630}/I_{550} для I_{630}/I_{630} , и фонового сигнала (I_{630}/I_{630}).

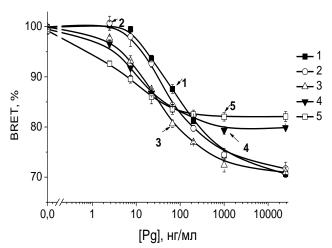


Рис. 13. Зависимость BRET*-сигнала от концентрации Fl-Ab при различных концентрациях Luc-Pg, нМ: 2 (кривая 1), 7 (кривая 2), 20 (кривая 3), 70 (кривая 4), 200 (кривая 5), 37 $^{\circ}$ C, время инкубации — 30 мин.

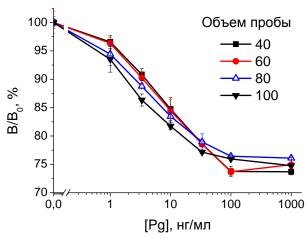
Из зависимости BRET*-сигнала от концентрации пары днор/акцептор (Рис. 13) следует, что с уменьшением концентрации GLuc-Pg максимальная величина BRET-сигнала наблюдается

при меньших концентрациях Fl-Ab. Так при увеличении концентрации конъюгата GLuc-Pg от 2 нМ до 200 нМ при постоянной концентрации Fl-Ab (100 нМ) BRET*-сигнал уменьшается в 9 раз. При низких концентрациях донора и акцептора BRET*-сигнал составляет 60 - 90% от максимального, следовательно, именно при этих концентрациях (выделенная область) наблюдается минимальный фон при максимальном значении специфического сигнала. Для этих концентраций были получены градуировочные зависимости изменения общего BRET-сигнала от концентрации свободного прогестерона. С увеличением концентрации свободного прогестерона, образующего специфический комплекс Pg---Fl-Ab без переноса энергии, BRET-сигнала при анализе свободного прогестерона был в 1,5 раза уже по сравнению с зависимостями, полученными при концентрации донора 2 и 7 нМ. В дальнейших экспериментах использовали минимальную концентрацию Luc-Pg (2 нМ), которая обеспечивала воспроизводимый биолюминесцентный сигнал (соотношение сигнал:шум 10:1) и максимальный динамический диапазон изменения BREТ-сигнала в присутствии минимальных концентраций акцептора.

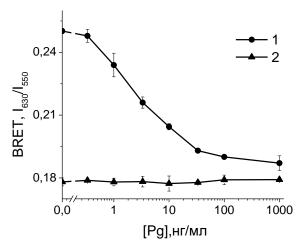
Для нахождения оптимальной концентрации Fl-Ab (при 2 нМ GLuc-Pg) были получены градуировочные кривые для определения Pg при концентрациях Fl-Ab от 12 до 200 нМ в реакционной смеси.

Рис. 14. Градуировочные кривые для определения свободного Pg при концентрациях Fl-Ab, нМ: 1- 200, 2- 100, 3- 50, 4- 25, 5- 12, Условия: 2 нМ GLuc-Pg, инкубация 30 мин при 37 °C.

Как показано на Рис. 14, при уменьшении концентрации Fl-Ab чувствительность определения прогестерона увеличивается, но динамический диапазон изменения BRET-сигнала уменьшается. Следовательно, оптимальные концентрации донора и акцептора для достижения высокой чувствительности и приемлемого динамического диапазона составили 2 нМ и 50 нМ соответственно.


Зависимость BRET-сигнала от длительности инкубации пары донор-акцептор определяется скоростью их комплексообразования. Мы изучили влияние температуры на скорость достижения равновесия в реакции GLuc-Pg с Fl-Ab и показали, что при 37 °C равновесие устанавливается через 10 мин, при 23 и 4 °C через 15 мин, однако при 4 °C наблюдается очень узкий

динамический диапазон изменения BRET-сигнала, поэтому проводить анализ при 4 °C нецелесообразно. Были получены зависимости BRET-сигнала от концентрации свободного прогестерона в реакционной смеси при 23 и 37 °C при двух временах инкубации - 10 минут (до установления равновесия) и 20 минут (в равновесных условиях), которые показали, что оптимальная температура провеления анализа 23 °C. При этом наблюдалась идентичная чувствительность при 10 и 20 мин инкубации.


Влияние порядка добавления реагентов на чувствительность анализа прогестеро-

на. В основе конкурентного гомогенного иммуноанализа лежит конкуренция двух процессов: образование комплекса Luc-Pg---Fl-Ab, в котором осуществляется перенос энергии и комплекса антител со свободным прогестероном Pg---Fl-Ab, в котором переноса энергии не наблюдается. Мы изучили влияние порядка смешения реагентов на чувствительность анализа до момента установления равновесия. Были получены зависимости BRET-сигнала от концентрации свободного прогестерона при различном порядке смешения реагентов: 1) предварительная инкубация Pg с Fl-Ab (1-19 мин) с последующим добавлением Luc-Pg (19-1 мин), 2) предварительная инкубация Luc-Pg с Fl-Ab с последующим добавлением Pg, 3) одновременное смешение реагентов. Суммарное время инкубации составляло 20 минут. Наилучшие результаты были получены при одновременном смешении Luc-Pg и Pg с Fl-Ab с последующей инкубацией в течение 20 минут при комнатной температуре.

Влияние объема вносимой пробы, содержащей прогестерон на чувствительность анализа. Для выяснения влияния объема анализируемой пробы на параметры анализа были получены градуировочные зависимости BRET-сигнала (%) от концентрации свободного прогестерона во вносимой пробе (Рис. 15). Увеличение объема пробы до 100 мкл способствовало повышению чувствительности анализа.

Рис. 15. Зависимости BRET-сигнала, % от концентрации свободного Pg во водимой пробе при ее объемах: 40, 60, 80, 100 мкл соответственно.

Рис. 16. Зависимости BRET-сигнала от концентрации свободного прогестерона для GLuc-Pg (1) и GLuc (2) в оптимизированных условиях.

Стоит отметить, что за счет увеличения объема пробы прогестерона с 40 до 100 мкл оптимизированные концентрации Luc-Pg и Fl-Ab в реакционной смеси после добавления пробы уменьшились в 2 раза при их неизменном содержании в реакционной смеси. Таким образом, были установлены оптимальные условия проведения гомогенного конкурентного иммуноанализа: состав реакционной смеси после добавления пробы 1 нМ Luc-Pg, 25 нМ Fl-Ab, буферный раствор PBST-BSA, инкубация при 23 °C в течение 20 мин при одновременном смешении компонентов реакционной смеси, объем пробы прогестерона 100 мкл, соотношение объемов GLuc-Pg:Fl-Ab:Pg 1:1:10. В оптимизированных условиях был проведен гомогенный иммуноанализ прогестерона. Полученные данные представлены на Рис. 16, согласно которым, минимальная определяемая концентрация прогестерона в пробе составляет 0,5 нг/мл, что эквивалентно 1,7 нМ.

4.4. Гетерогенный иммуноанализ прогестерона с использованием биолюминесцентного метода детекции

Было проведено сравнение чувствительности гомогенного иммуноанализа на основе BRET с традиционным гетерогенным конкурентным иммуноанализом с использованием тех же конъюгатов GLuc-Pg состава 1:3. Анализ проводили по следующей схеме. На поверхность полистирольного планшета, обработанную белком A, иммобилизовали кроличьи поликлональные антитела к прогестерону, вносили растворы GLuc-Pg и пробу, содержащую Pg (в объемном соотношении 10:1), инкубировали в течение часа при 37 °C. После удаления несвязавшихся компонентов добавляли субстратную смесь и регистрировали интенсивность биолюминесценции, которая была пропорциональна количеству связавшегося с антителами конъюгата и обратно пропорциональна концентрации свободного Pg. В данном случае белок A был использован для улучшения эффективности иммобилизации антител, поскольку он образует связь с Fсфрагментами антител, способствуя их упорядоченной ориентации и улучшению доступности для антигена.

Для выявления концентраций Ab и GLuc-Pg, обеспечивающих максимальную чувствительность, проводили шахматное титрование с использованием растворов антител с концентрациями в диапазоне 0,1-10 мкг/мл и растворов GLuc-Pg в концентрациях 2, 4, 8 нМ по алгоритму, использованному для оптимизации концентраций пары донор/акцептор в гомогенном ИФА. Согласно экспериментальным данным, оптимальные концентрации GLuc-Pg и Ab составили 2 нМ и 4,5 нМ соответственно. Для дополнительного увеличения чувствительности анализа был увеличен объем вводимой пробы свободного прогестерона в 10 раз при сохранении концентрации GLuc-Pg в инкубационной смеси, что позволило снизить передел обнаружения с 3 до 0,3 нг/мл.

На Рис. 17 показаны градуировочные зависимости для двух методов анализа, проведенных в оптимизированных для каждого метода условиях. В Таблице 3 приведены их аналитические характеристики.

Рис. 17. Градуировочные зависимости относительного биолюминесцентного (I/I_0) или BRET (B/B_0) сигналов от концентрации Pg для гетерогенного (кривая 1) и гомогенного (кривая 2) иммуноанализа прогестерона с использованием конъюгатов GLuc-Pg.

Таблица 3. Аналитические характеристики гомогенного и гетерогенного иммуноанализа.

	Гомогенный	Гетерогенный	
Линейный диапазон	0,3-30 нг/мл	0,1-100 нг/мл	
Уравнение	$B/B_0 = -4.913\ln(C) + 93.465$	$I/I_0 = -15,24\ln(C) + 62,824$	
\mathbb{R}^2	0,992	0,995	
Предел обнаружения	0,5 нг/мл	0,3 нг/мл	

Согласно полученным данным, метод, разработанный на основе BRET, обладает практически идентичной чувствительностью, что и гетерогенный конкурентный иммуноанализ с использованием тех же конъюгатов с незначительным увеличением предела обнаружения с 0,3 до 0,5 нг/мл. При этом время анализа сокращается с 1 часа до 20 минут, значительно уменьшается трудоемкость анализа. Анализ проводится при комнатной температуре и не требует специальной обработки планшета по сравнению с гетерогенным иммуноанализом, где требуются предварительные стадии сорбции белка A, антител и промывания планшета после специфической реакции.

выводы

- 1) Сконструирована плазмида, кодирующая гибридный белок высокоактивного термостабильного мутанта люциферазы Luciola mingrelica с биотин-связывающим доменом (Lucbccp-His₆), при экспрессии которой в клетках E. coli с высоким выходом получен гибридный белок Luc-bccp, биотинилированный in vivo, обладающий высокой биолюминесцентной активностью и способностью связывать стрептавидин. Показано, что каталитические свойства, термостабильность и спектры биолюминесценции гибридного белка Luc-bccp и исходной люциферазы идентичны.
- 2) Сконструированы плазмиды, кодирующие гибридные белки высокоактивного термостабильного мутанта люциферазы *Luciola mingrelica* со стрептавидином (*SA-Luc-His₆*, *SA-Luc-His₆*, *M/G*, *His₆-SA-Luc*, *Luc-SA-His₆*). Показано, что олигомерный состав, люциферазная активность и сродство к биотину гибридных белков, полученных при экспрессии сконструированных плазмид, зависят от взаимного расположения доменов люциферазы, стрептавидина и His₆ последовательности. Показано, что гибридный белок His₆-SA-Luc образуется преимущественно в тетрамерной форме, обладающей высокой люциферазной активностью и высоким сродством к биотину. Эти свойства определяют перспективность его использования в биоаналитических системах на основе биотин-стрептавидиновых взаимодействий.
- 3) Показано, что гибридный белок His₆-SA-Luc является высокоэффективным реагентом при специфической детекции клеток микроорганизмов на основе биотин-стрептавидиновых взаимодействий как с использованием иммуноанализа, так и с использованием гибридизационного анализа специфических последовательностей сегментов ДНК клеток микроорганизмов.
- 7) Создана новая система для эффективного биолюминесцентного резонансного переноса энергии на основе конъюгатов термостабильного мутанта люциферазы с антигеном и конъюгатов красителя Alexa Fluor с антителами. Показано, что эффективность переноса энергии значительно зависит от состава конъюгатов и состава реакционной среды.
- 8) Методом генетической инженерии получен новый термостабильный мутант люциферазы светляков *Luciola mingrelica* с заменами Tyr35Asn, Ser398Met, которые приводят к смещению максимума биолюминесценции с 590 до 550 нм. Показана более высокая эффективность регистрации BRET-сигнала с использованием полученного мутанта по сравнению с исходной формой люциферазы.
- 9) Разработан высокочувствительный метод гомогенного иммуноанализа прогестерона на основе биолюминесцентного резонансного переноса энергии с использованием конъюгатов люцифераза-прогестерон и конъюгатов антител к прогестерону с красителем. Показано, что данный метод обладает меньшей трудоемкостью и позволяет значительно сократить длительность проведения анализа по сравнению с гетерогенным иммуноанализом.

СПИСОК ПУБЛИКАЦИЙ ПО ТЕМЕ ДИССЕРТАЦИИ

- 1) Смирнова Д.В., Кокшаров М.И., Зоров И.Н., Угарова Н.Н. Гибридные белки люцифераза-стрептавидин. Получение, свойства. *Вестник Московского университета*. *Серия 2. Химия*, 2014, т. 55, № 2, с. 79-85
- 2) **Smirnova D.**, Samsonova J., Ugarova N. BRET-based homogeneous competitive immunoassay of progesterone. *Luminescence*, 2014, ToM 29, № Suppl. 1, c. 94-96
- 3) Кокшаров М. И., **Смирнова Д.В.**, Аббасова С.Г., Угарова Н. Н. Гибридный белок: люцифераза *Luciola mingrelica* биотин-связывающий домен. Получение, свойства, применение. *Вестник Московского университета*. *Серия 2. Химия*, 2011, т. 52, № 4, с. 291-297
- 4) **Smirnova D.V.**, Koksharov M.I., Ugarova N.N. Fusion proteins of *Luciola mingrelica* firefly luciferase. Preparation, properties, application *Luminescence*, 2012, Tom 27, № 2, c. 160-160
- 5) **Smirnova D.V.**, Samsonova J.V., Osipov A.P., Ugarova N.N. Homogeneous immunoassay of progesterone based on bioluminescence resonance energy transfer. *Book of abstracts of Chemistry Conference for Young Scientists (ChemCYS 2014)*, 27–28 February, 2014, Blankenberge, Belgium, p. 101
- 6) **Smirnova D. V.**, Samsonova J. V., Osipov A. P., Ugarova N. N. Optimisation of homogeneous immunoassay of progesterone based on bioluminescence resonance energy transfer. *Book of abstracts of the 16th JCF Spring Symposium (JCF-Frühjahrs symposium)*, March 26-29, 2014, Jena, Germany, p. 71
- 7) **Смирнова Д. В.**, Кокшаров М. И., Рубцова М. Ю., Угарова Н. Н. Получение, свойства и применение фъюжинов стрептавидин-люцифераза для детекции ДНК. *Материалы YII съезда российского фотобиологического общества*, 14-20 сентября, 2014, пос. Шепси, Россия, с. 112
- 8) **Smirnova D. V.**, Koksharov M. I., Zorov I. N., Ugarova N. N. Activity and affinity to biotin of different oligomeric forms of fusion proteins Luciola mingrelica firefly luciferase with streptavidin. *Book of Abstracts of International Conference "Biocatalysis-2013: Fundamentals & Applications"*, July 2-5, 2013, Moscow, Russia, p. 42-43
- 9) **Smirnova D. V.**, Samsonova J. V., Osipov A. P., Ugarova N. N. Homogeneous immunoassay based on bioluminescence resonance energy transfer from Luciola mingrelica luciferase. *Book of abstracts of the 15th JCF Spring Symposium (JCF-Frühjahrs symposium)*, March 6-9, 2013, Berlin, Germany, p. 164
- 10) Угарова Н. Н., Кокшаров М. И., Ломакина Г. Ю., **Смирнова Д. В.** Гибридные белки и конъюгаты на основе люциферазы светляков и их применение в биолюминесцентной детекции биоспецифических молекул и клеток микроорганизмов. *Материалы 7-го Московского международного конгресса "Биотехнология: состояние и перспективы развития"*, 19-22 марта, 2013, Москва, Россия, с. 140-141
- 11) **Смирнова** Д.В., Самсонова Ж.В., Осипов А.П. Гомогенный иммуноанализ, основанный на биолюминесцентом резонансном переносе энергии с участием люциферазы светляков *Luciola mingrelica*. *Материалы докладов IY съезда биофизиков России*, 20-26 августа, 2012, Нижний Новгород, Россия, с. 211
- 12) Смирнова Д.В., Кокшаров М.И., Угарова Н.Н. Гибридные белки на основе люциферазы светляков *L. mingrelica*. Получение, свойства, применение. *Материалы VI Съезда Российского фотобиологического общества*, 15–22 сентября, 2011, пос. Шепси, том 1, с. 135

13) **Смирнова Д.В.**, Кокшаров М.И., Угарова Н.Н. Гибридный белок: люцифераза Luciola mingrelica - биотин-связывающий домен. Получение, свойства, применение. *Материалы VI Московского международного конгресса " Биотехнология: состояние и перспективы развития"*, 21-25 марта, 2011, Москва, Россия, т. 2, с. 291-292

Диссертационная работа выполнена при финансовой поддержке РФФИ (гранты 08-04-00624a, 11-04-00698, 15-04-01193)

Автор выражает свою искреннюю благодарность: к.х.н. с.н.с. Самсоновой Ж.В. за консультирование по проведению иммуноферментного анализа, к.х.н. в.н.с. Рубцовой М. Ю. за консультирование по проведению гибридизационного анализа, к.х.н. с.н.с. Зорову И. Н. за помощь в проведении эксклюзионной хроматографии, к.х.н. с.н.с. Григоренко В. Г. за предоставление гена стрептавидина; а также всему коллективу лаборатории физико-химических основ биоконверсии энергиии Химического факультета МГУ за поддержку при работе над диссертацией.