Лекция 12

Металлы: общие свойства. Непереходные и переходные металлы. Химическая связь в комплексных соединениях.

МЕТАЛЛЫ В ЖИВЫХ ОРГАНИЗМАХ

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15e	16	17	18
		_		_	_		_	_	_			_			_		_

1]																2
Н																	He
3	4]										5	6	7	8	9	10
Li	Be											В	С	N	0	F	Ne
11	12											13	14	15	16	17	18
Na	Mg											Al	Si	Р	S	CI	Ar
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Υ	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	ı	Xe
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ва	La	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Ро	At	Rn
87	88	89	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118
Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg							

Лантаноиды

58	59	60	61	62	63	64	65	66	67	68	69	70	71
Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu

НЕПЕРЕХОДНЫЕ И ПЕРЕХОДНЫЕ МЕТАЛЛЫ

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
		_																
1																		2
1			_													_	_	He
	3	4											5	6	7	8	9	10
2	Li	Ве											В	С	N	0	F	Ne
	11	12											13	14	15	16	17	18
3	Na	Mg											ΑI	Si	Р	s	CI	Ar
	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
4	K	Са	Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
5	Rb	Sr	Υ	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	ı	Xe
	55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
6	Cs	Ва	La	Hf	Та	w	Re	Os	lr	Pt	Au	Hg	TI	Pb	Bi		At	Rn
	87	88	89	104	105	106	107	108	109	110	111	112	113	114	115	116		
7	Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg							
													•		•			•
	Лант	аноид	Ы		58	59	60	61	62	63	64	65	66	67	68	69	70	71
					Се	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
	Акти	ноидь	I		90	91	92	93	94	95	96	97	98	99	100	101	102	103
					Th	Ра	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr

НЕПЕРЕХОДНЫЕ И ПЕРЕХОДНЫЕ МЕТАЛЛЫ

Непереходные	Переходные										
Макс. степе	ень окисления										
Макс. СО равна № группы	Макс. СО в 3 – 8 группах равна № в 9 –12 группах меньше №										
Устойчивос	ть высшей СО										
По группе уменьшается	По группе увеличивается										
Физические свойства											
Низкие $T_{пл.}$ и $T_{кип.}$ Низкая механич. прочность (в связи участвуют e^- внешнего уровня)	Высокие $T_{пл.}$ и $T_{кип.}$ Высокая механич. прочность (в металлической связи участвуют e^- внешнего уровня и предвнешнего d -подуровня)										
Взаимодейств	Взаимодействие с кислородом										
Реагируют на воздухе	При высокой температуре										

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
		_																
																		2
1			_															He
	3	4											5	6	7	8	9	10
2	Li	Ве											В	С	N	0	F	Ne
	11	12]										13	14	15	16	17	18
3	Na	Mg											ΑI	Si	Р	s	CI	Ar
	1 1 1	-	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
4	1 p	яд	Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
	2 p	ял	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
5	_ P	<u>''H</u>	Υ	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	ln	Sn	Sb	Те	ı	Xe
	3 p	ял	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
6		<u>~~</u>	La	Hf	Та	W	Re	Os	lr	Pt	Au	Hg	ΤI	Pb	Bi		At	Rn
	4 p	яд	89	104	105	106	107	108	109	110	111	112	113	114	115	116		
7			A <u>c</u>	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg							

Лантаноиды

Актиноиды

f	58	59	60	61	62	63	64	65	66	67	68	69	70	71
	Се	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
	90	91	92	93	94	95	96	97	98	99	100	101	102	103
I	Th	Ра	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr

Распространенность

Ряд	3	4	5	6	7	8	9	10	11	12
	21	22	23	24	25	26	27	28	29	30
1	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn
	39	40	41	42	43	44	45	46	47	48
2	Υ	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd
	57	72	73	74	75	76	77	78	79	80
3	La	Hf	Та	W	Re	Os	lr	Pt	Au	Hg

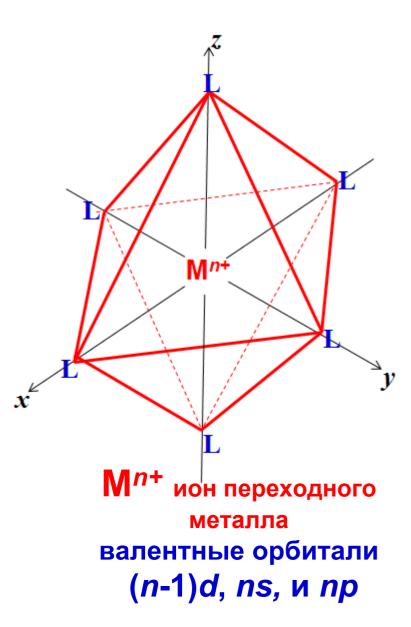
Изменение $r_{am.}$ (пм) по ряду и

групп 1 ряд	e Sc	Ti	 Mn	 Ni	Cu	Zn
	164	146	130	124	128	139
2 ряд	Υ	Zr	 Тс	 Pd	Ag	Cd
	181	160	136	138	144	156
3 ряд	La	Hf	 Re	 Pt	Au	Hg
	187	159	137	139	144	160

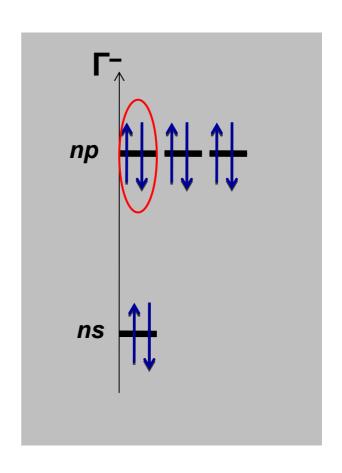
14*f*-металлов «лантаноидное сжатие»

Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu

Общие свойства

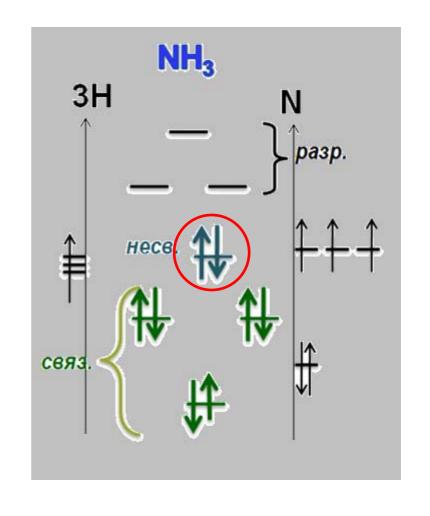

1. Различные степени окисления +1, +2+n (исключение Sc, Y).

Стабильность высшей СО по группе возрастает.

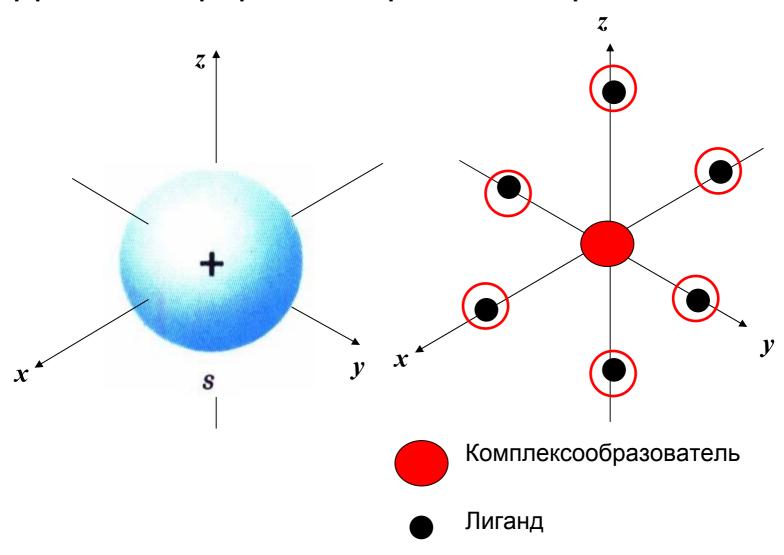

- 2. Высокие прочность, твердость, $T_{пл.}$, $T_{кип.}$ (d-связывание).
- 3. Кислотно-основные свойства оксидов и гидроксидов

```
+1, +2 — основные (CrO)
+3, +4 — амфотерные (Cr<sub>2</sub>O<sub>3</sub>)
> +4 — кислотные (CrO<sub>3</sub>)
```

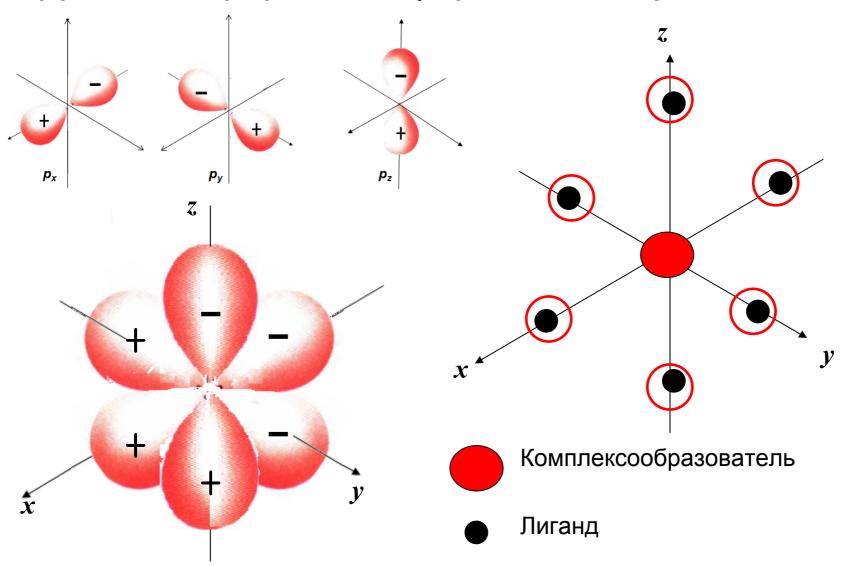
4. Склонность к комплексообразованию

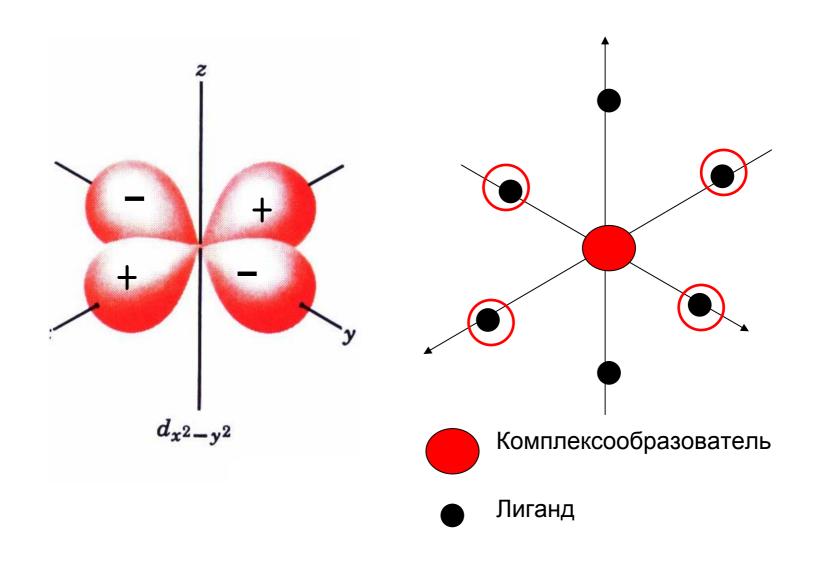


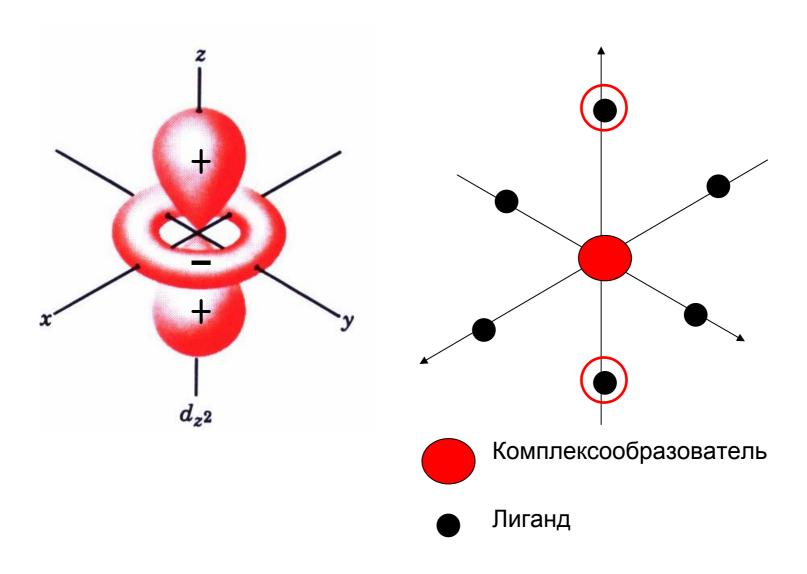
 $L = F^-, CI^-, Br^-, I^-, H_2O, NH_3, CN^-$

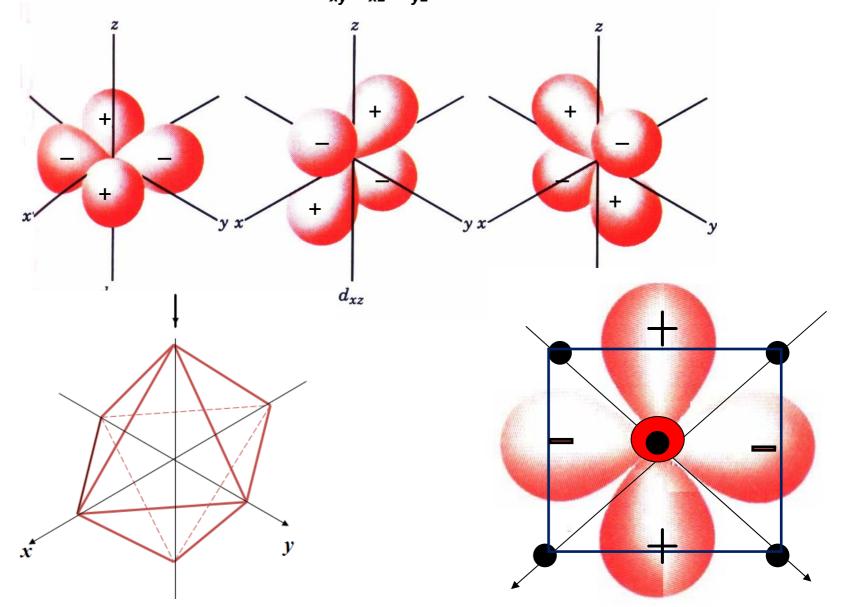


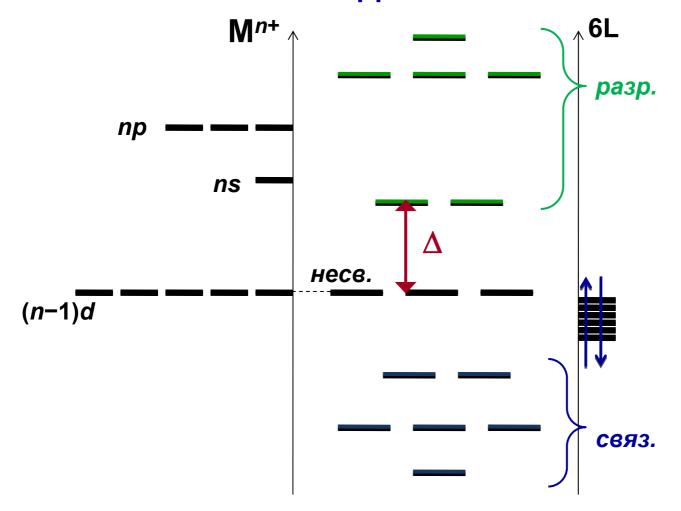
ион переходного металла валентные орбитали (n-1)d, ns, и пр


 $L = F^-, Cl^-, Br^-, l^-, H_2O, NH_3, CN^-$

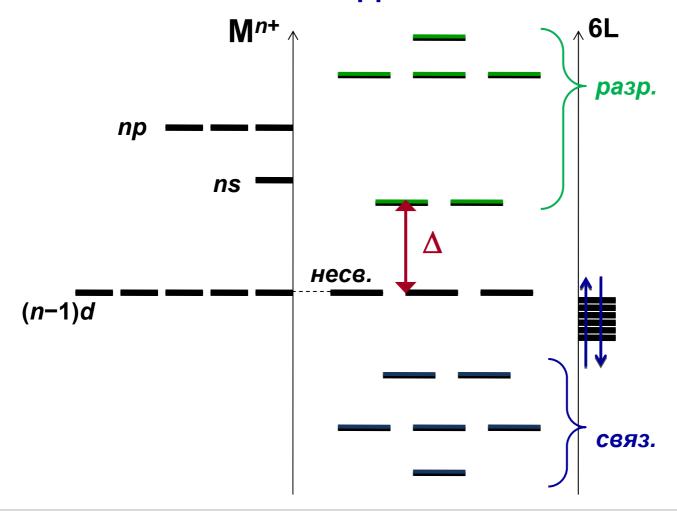

Эффективное перекрывание s-орбитали \mathbf{M}^{n+} с орбиталями \mathbf{L}


Эффективное перекрывание 3-х p-орбиталей \mathbf{M}^{n+} с орбиталями \mathbf{L}


Эффективное перекрывание $d_{x_2-y_2}$ -орбитали \mathbf{M}^{n+} с орбиталями \mathbf{L}

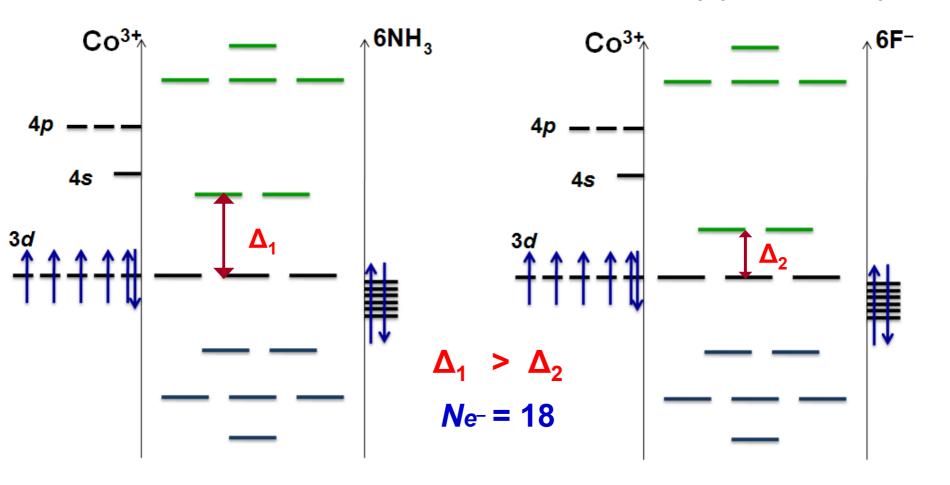

Эффективное перекрывание $d_{\mathbf{Z}^2}$ -орбитали \mathbf{M}^{n+} с орбиталями \mathbf{L}

Неэффективное перекрывание d_{xy} , d_{xz} , d_{yz} - орбиталей \mathbf{M}^{n+} с орбиталями \mathbf{L}


ЭНЕРГЕТИЧЕСКАЯ ДИАГРАММА МО КОМПЛЕКСА

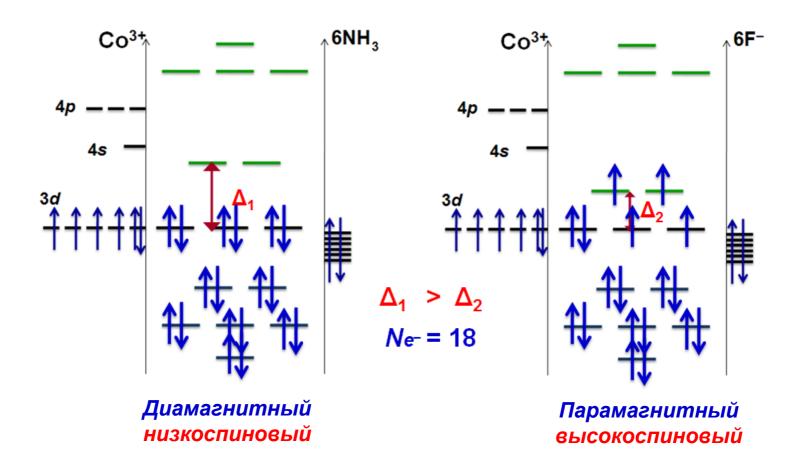
Энергия расщепления Δ зависит

- 1.От природы иона комплексообразователя
- 2.От заряда иона комплексообразователя
- 3. От природы лиганда

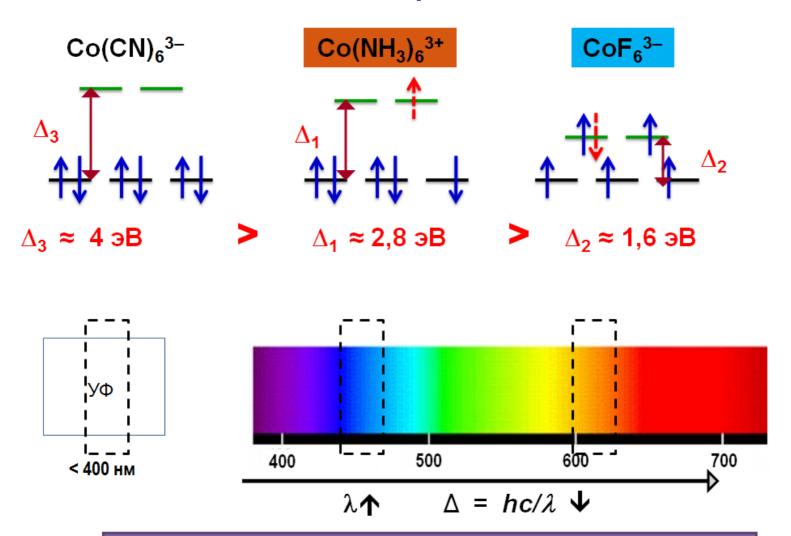

ЭНЕРГЕТИЧЕСКАЯ ДИАГРАММА МО КОМПЛЕКСА

Спектрохимический ряд лигандов

 \triangle уменьшается \rightarrow $CO > CN^- > NO_2^- > NH_3 > SCN^- > H_2O > OH^- > F^- > CI^- > Br^- > I$ лиганды сильного поля \rightarrow лиганды слабого поля


Энергетические диаграммы МО $[Co(NH_3)_6]^{3+}$ и $[CoF_6]^{3-}$

Спектрохимический ряд лигандов


 \triangle уменьшается \rightarrow $CO > CN^- > NO_2^- > NH_3 > SCN^- > H_2O > OH^- > F^- > CI^- > Br^- > I$ лиганды сильного поля \rightarrow лиганды слабого поля

Энергетические диаграммы МО $[Co(NH_3)_6]^{3+}$ и $[CoF_6]^{3-}$

ЭНЕРГИЯ РАСЩЕПЛЕНИЯ Δ

Устойчивость комплекса не связана с Δ Устойчивость определяется константой β