Лекция 1

Химия элементов 16 группы (продолжение) Химия элементов 15 группы

Лекция 11

Химия элементов 16 группы (продолжение). Химия элементов 15 группы.

Бинарные соединения кислорода

Оксиды О²⁻

ст. ок. -2 (все элементы, кроме He, Ne, Ar, F)

Классификация оксидов

- **-по кислотно-основным свойствам** (кислотные, основные, амфотерные и безразличные)
- **по типу химической связи** (металлоподобные, ионные, ковалентные)

Оксиды

- Кислотные оксиды —

оксиды неметаллов и металлов в высоких ст. ок. имеют молекулярную или атомарную структуру

$$Mn_2O_7 + H_2O = HMnO_4$$

- Основные оксиды оксиды ЩМ, ЩЗМ и РЗМ ионные,
 О²⁻ + H₂O = 2OH⁻
 р- и d-металлы в низких с. ок. (+1) и (+2) ковалентный вклад
- **Амфотерные оксиды** оксиды металлов Al_2O_3 , ZnO, Cr_2O_3

Бинарные соединения кислорода

- **Оксиды О²** ст. ок. -2
- Пероксиды O_2^{2-} ст. ок. -1 (Na₂O₂, BaO₂) группа –О—О— во многих соединениях персульфат-ион $S_2O_8^{2-}$ сильные окислители
- **Супероксиды О₂** (MO₂, M только K, Rb и Cs)
- **Озониды О**₃⁻ (МО₃, М только К, Rb и Cs)

Применение

$$2Na_2O_2 + 2CO_2 = 2Na_2CO_3 + O_2$$

 $4 KO_2 + 2CO_2 = 2K_2CO_3 + 3O_2$

Водородные соединения элементов 16 группы

 H_2O H_2S H_2O_2 H_2S_n

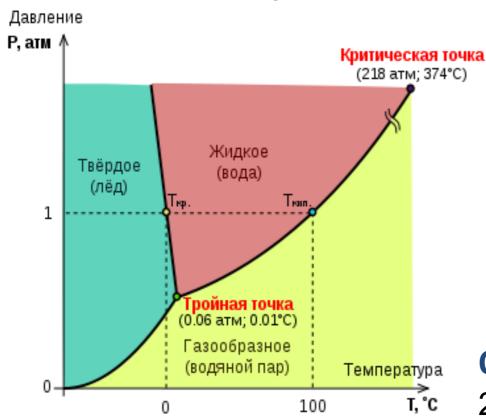
H₂Se

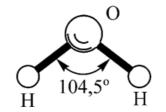
H₂Te

Свойство	H ₂ O	H ₂ S	H ₂ Se	H ₂ Te
Температура плавления, ⁰С	0	-85,6	-65,7	- 51,0
Температура кипения, ⁰С	100	-60,3	-45,5	-1,8
Энергия связи, кДж/моль	421,8	381	276	238
Угол Н–Э–Н	104,5°	92°	91°	90°
Δ _f <i>G</i> °298, кДж/моль	-237,2	-33,8	19,7	85,1

Водородные соединения

Водные растворы H₂X кислоты


H ₂ O		H ₂ S	H ₂ Se	H ₂ Te			
	Сила кислот увеличивается						
, KI	10-14	5,7·10 ⁻⁸	1,3·10 ⁻⁴	2,5·10 ⁻³			
ΚΙΙ '`''	амфолит	1,2·10 ⁻¹⁵	1,0·10 ⁻¹¹	1,0·10 ⁻¹¹			


Восстановительная способность увеличивается

$$E^{\circ}$$
, B +1,223 +0,142 -0,399 -0,793
 \Im + 2H⁺ +2 e^{-} \rightarrow H₂ \Im

Вода свойства

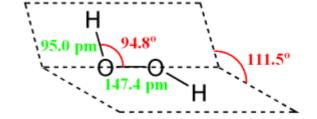
Фазовая диаграмма воды

Вода - амфолит

$$H_2O + HA \rightleftharpoons H_3O^+ + A^-$$
 осн
 $H_2O + A^- \rightleftharpoons OH^- + HA$ к-та

Окислитель

$$2H_2O + 2Na = NaOH + H_2$$


восстановитель

$$2H_2O + 2F_2 = 4HF + O_2$$

Пероксид водорода

$\mathbf{H_2O_2}$ - бесцветная жидкость

$$T_{\Pi \Pi} = -0.4$$
°C, $T_{KM\Pi} = 150$ °C

• Окислительные свойства:

$$Na_2SO_3 + H_2O_2 = Na_2SO_4 + H_2O$$

Восстановительные свойства

$$5H_2O_2 + 2KMnO_4 + 3H_2SO_4 = 5O_2 \uparrow + 2MnSO_4 + K_2SO_4 + 8H_2O_4 + 8H_2$$

Кислотные свойства

$$H_2O_2 + H_2O \Rightarrow HO_2^- + H_3O^+, K = 2,4\cdot10^{-12}$$

 $H_2O_2 + 2NaOH = Na_2O_2 + 2H_2O$

Термодинамически неустойчива

$$2H_2O_2 = 2H_2O + O_2\uparrow$$
, $\Delta G^{\circ} = -233,6$ кДж.

Сероводород

 H_2S – бесцветный газ с неприятным запахом

Очень слабая кислота

$$H_2S \rightleftharpoons H^+ + HS^-, \qquad K_1 = 5,7 \times 10^{-8}, HS^- \rightleftharpoons H^+ + S^{2-}, \qquad K_2 = 1,2 \times 10^{-15}$$

Восстановительные свойства

$$H_2S - 2e$$
— \square 2H⁺ + S E° = 0,17 B Сильные окислители до SO_4^{2-}

$$H_2S + 4CI_2 + 4H_2O = H_2SO_4 + 8HCI$$

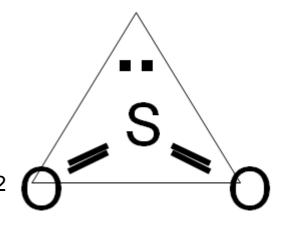
Соли - сульфиды и гидросульфиды ($\mathrm{NH_4}^+$, ЩМ и Ва р-римы)

$$S^{2-} + H_2O \Rightarrow HS^- + OH^- K_{\Gamma} \sim 1$$

 $HS^- + H_2O \Rightarrow H_2S + OH^-$

Полисульфиды

$$K_2S + (n-1)S = K_2S_n$$
 (n om 2 do 9)


Кислородные соединения серы

Диоксид серы SO₂ газ

Кислотный оксид

Сернистая кислота

$$SO_{2(p)} + H_2O \leftrightarrows H^+ + HSO_3^-, K_1 = 1,41\cdot 10^{-2}$$

 $HSO_3^- \leftrightarrows H^+ + SO_3^{2-}, K_2 = 6,3\cdot 10^{-8}$

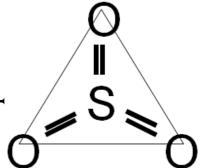
Соли- сульфиты и гидросульфиты

$$SO_3^{2-} + H_2O \leftrightarrows HSO_3^- + OH^-$$

Сильный восстановитель

$$SO_2 + H_2O_2 = H_2SO_4$$

Слабый окислитель


$$SO_2 + 2H_2S = 3S + 2H_2O$$

Кислородные соединения серы

Триоксид серы SO₃ газ

Получение:

$$2SO_2(\Gamma.) + O_2 \leftrightarrows 2SO_3(\Gamma.), \ \Delta_r H^{\circ}_{298} = -197,8 \ кДж$$

Серная кислота

Получение:

$$SO_3 + H_2O = H_2SO_4$$
, $\Delta_r H^{\circ}_{298} = -132,6$ кДж

Разбавленная - просто сильная кислота

$$Zn + H_2SO_{4(pa36.)} = ZnSO_4 + H_2\uparrow$$
,

Концентрированная – окислитель

$$Cu + 2H_2SO_{4(KOHU,.)} = CuSO_4 + SO_2\uparrow + 2H_2O$$

Водоотнимающие свойства

$$SO_2 + 2H_2S = 3S + 2H_2O$$

Кислородные соединения S, Se и Te **ЭО**₂ и **ЭО**₃ кислотные оксиды

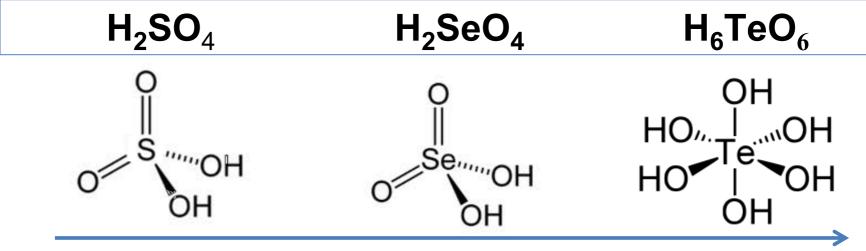
SO₂, газ хорошо р-рим "**H**₂**SO**₃" SeO_2 , тв. хорошо р-рим H_2SeO_3

TeO₂, тв.плохо **H₂TeO₃**

Сила кислот убывает

$$\mathbf{K}_{KII}$$
 1,41·10⁻² \mathbf{K}_{KII} 6,3·10⁻⁸

$$2,4\cdot10^{-3}$$
 $4\cdot10^{-9}$


$$5,4\cdot10^{-7}$$
 $3\cdot10^{-9}$

+0,529

Окислительная способность увеличивается

$$E^{\circ}$$
, B +0,449 +0,741
 $H_{2}\Theta_{3} + 4H^{+} + 4e^{-} = 9 + 3H_{2}\Theta$
 $H_{2}TeO_{3} + 2SO_{2} = Te + H_{2}SO_{4} + SO_{3}$

Кислородные соединения S, Se и Te

Сила кислот убывает

$$\mathbf{K}_{\text{KII}}$$
 - 2,0·10⁻⁸
 \mathbf{K}_{KII} 1,02·10⁻² 2·10⁻² 1,0·10⁻¹¹

Окислительная способность увеличивается

$$E^{\circ}$$
, B +0,172 +1,151 +1,12
H₂9O₃ + 4H⁺ + 4e⁻ = 9 + 3H₂O

Аналогия с 17 группой

HCIO₄ HBrO₄ H₅IO₆

Химия элементов 15 группы **N**, **P**, **As**, **Sb**, **Bi** ns²np³

1. Свойства атомов

	<i>r,</i> пм	<i>E_{ион},</i> кДж/моль	χ	Устойчивые СО
N	74	14,53	3,04	-3,+1,+2, +3,+4,+5,
Р	110	10,5	2,19	-3,+3,+5
As	140	9,8	2,18	-3,+3,+5
Sb	160	8,6	2,05	-3,+3,+5
Bi	190	7,3	2,02	+3,+5

Химия элементов 15 группы.

Азот

1. Простое вещество N_2 газ

Водородные соединения азота

 $\mathbf{NH_3}$, $\mathbf{N_2H_4}$, $\mathbf{HN_3}$, и др. (около 20)

NH_3 — аммиак

$$(t_{\Pi I} = -77,75^{\circ}C; t_{KMI} = -33,35^{\circ}C)$$

Хорошо р-рим в воде 700 л/л

$$NH_3 + H_2O \Rightarrow NH_4^+ + OH^-$$
, Кд = 1,8·10⁻⁵

Восстановитель

$$2NH_3 + 2MnO_4^- = N_2 + 2MnO_2 + 2OH^- + 2H_2O$$

Соли аммония (хорошо р-римы)

$$NH_3 + H^+ = NH_4^+$$
 (аммоний)

$$NH_4^+ + H_2O \Rightarrow NH_3 + H_3O^+$$

Разлагаются при нагревании

Оксиды азота

	N ₂ O	NO	N ₂ O ₃	NO ₂	N ₂ O ₅
C.O.	+1	+2	+3	+4	+5
∆_fG°, кДж/моль	104,1	86,6	140,5	51,5	114,1

Получение:

$$N_2 + O_2 \Leftrightarrow 2NO$$
 при очень высоких T

$$4NH_3 + 5O_2 \Rightarrow 4NO + 6H_2O (Pt-Rh)$$

$$N_2O$$
 $NH_4NO_3 = N_2O\uparrow + 2H_2O$

$$N_2O_3$$
 NO + $NO_2 \rightleftharpoons N_2O_3$ (охлаждение)

$$N_2O_5 \quad 4nHNO_3 + nP_4O_{10} \Rightarrow 2nN_2O_5 + 4(HPO_3)_n$$

$$NO_2$$
 $NO + O_2 = NO_2$

Оксиды азота

C.o. +1
$$N_2O$$

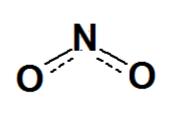
$$N^-=N^+=O$$

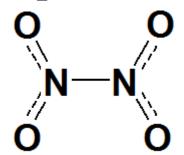
Окислитель (при нагревании)

$$2N_2O + C = CO_2 + 2N_2$$
.

Слабый окислитель

$$2NO + 2H_2S = 2S + N_2 + H_2O$$


NO


восстановитель

$$2NO + O_2 = 2NO_2$$

C.o. + 4 NO₂ и N₂O₄

$$4NO_2 + 2H_2O + O_2 = 4HNO_3$$

 $2NO_2 \leftrightarrows N_2O_4$

$$N_2O_3$$
 [NO⁺] [NO₂⁻] HNO₂

$$N_2O_5$$
 [NO₂⁺][NO₃⁻]
HNO₃

Кислородные кислоты азота

Азотистая кислота

Устойчива в разб. растворах ightarrow разлагается

$$3HNO_2 \Rightarrow HNO_3 + H_2O + 2NO$$

Слабая кислота

$$HNO_2 \rightleftharpoons H^+ + NO_2^-$$

$$K = 4.10^{-4}$$

Соли- нитриты – гидролизуются

$$NO_2^- + H_2O \leftrightarrows HNO_2 + OH^-$$

Окислитель

$$2HNO_2 + 2I^- + 2H^+ = I_2 + 2NO + 2H_2O$$

Слабый восстановитель

$$5NO_2^- + 2MnO_4^- + 6H^+ = 5NO_3^- + 2Mn^{2+} + 3H_2O$$

Кислородные кислоты азота

Азотная кислота

разлагается на свету и при t

$$4HNO_3 \Rightarrow 4NO_2 + 3H_2O + O_2$$

Сильная кислота

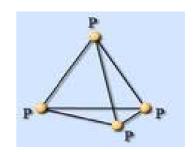
$$HNO_3 = H^+ + NO_3^-$$

Соли- нитраты – не гидролизованы, хорошо рримы

Сильный окислитель

Все неблагородные металлы (Al, Cr, Ti, Fe и др. пасс.)

Большинство неметаллов


получается смесь продуктов восстановления:

 $(NO_2, NO, N_2O, N_2$ и $NH_4NO_3)$

Фосфор

Аллотропия фосфора

Р(белый) молекул. решетка Р₄ Р(красный) и Р(черный) атомная решетка

Переходы:

- $P(красный) \rightarrow P_4(\Gamma.)$ испарение
- $P_4(\Gamma.) \rightarrow P_4$ (белый) конденсация пара
- P_4 (белый) \longrightarrow $\mathsf{P}(красный)$ медленно
- P_4 (белый) ightarrow P(черный) 200° С и 12000атм

Химические свойства

Окислительно-восстановительные

$$3P + 5HNO_3 + 2H_2O = 3H_3PO_4 + 5NO^{1}$$
.

$$4P + 3KOH + 3H_2O = PH_3 \uparrow + 3KH_2PO_2$$

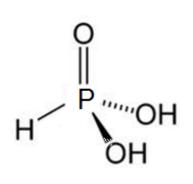
Водородные соединения фосфора

Фосфин –
$$PH_3$$

Получают

$$Ca_3P_2 + 6H_2O = 3Ca(OH)_2 + 2PH_3\uparrow$$

Практически не проявляет основных свойств


$$PH_3 + H_2O \Rightarrow PH_4^+ + OH^-, K = 4.10^{-28}$$

 $PH_{3(\Gamma)} + HI_{(\Gamma)} = PH_4I,$

Сильный восстановитель

$$PH_3 + 2I_2 + 2H_2O = H[H_2PO_2] + 4HI$$

Кислородные соединения фосфора

Оксид – P_4O_6

$$P_4O_6 + 6H_2O = 4H_3PO_3$$
 фосфористая к-та $H_3PO_3 \rightleftharpoons H^+ + H_2PO_3^-, \quad K_1 = 5,0\cdot 10^{-2}, H_2PO_3^- \rightleftharpoons H^+ + HPO_3^{2-}, \quad K_2 = 2,0\cdot 10^{-7}.$

Восстановительные свойства

$$H_3PO_4 + 2H^+ + 2e^- = H_3PO_3 + H_2O$$
, $E^\circ = -0.28$

Оксид – P₄O₁₀

$$P_2O_5 + 3H_2O = 2H_3PO_4$$
 фосфорная кислота

кроме Н₃РО₄, существует много полифосфорных кислот

$$HO-(PO_2OH)_n-OH$$

Окислительные свойства нехарактерны

Соли фосфорной кислоты

Фосфаты р-римы только ЩМ и NH₄+

$$PO_4^{3-} + H_2O \rightleftharpoons HPO_4^{2-} + OH^- K_r = 0.2$$

Гидрофофаты

$$HPO_4^{\ 2-} + H_2O \Rightarrow H_2PO_4^{\ -} + OH^- K_r = 2 \cdot 10^{-7}$$
 Дигидрофосфаты хорошо р-римы

$$H_2PO_4^{2-} + H_2O \Rightarrow HPO_4^{2-} + H_3O^+ K_{\mu 2} = 2 \cdot 10^{-7}$$

Смесь солей $H_2PO_4^-$ и HPO_4^{2-} («фосфатный буфер») pH $^{\sim}$ 7.

Мышьяк, сурьма, висмут

Окисляются при нагревании

$$49 + 3O_2 = 29_2O_3$$
 (9 = As, Sb, Bi)
 $49 + 5O_2 = 29_2O_5$ (9 = As, Sb)
 $BiF_3 + F_2 = BiF_5$

Арсин AsH_3 , стибин SbH_3 и висмутин BiH_3 неуст.

основные свойства не проявляют сильные восстановители

Кислородные соединения

c.o.+3

As₂O₃ H₃AsO₃ Sb_2O_3

Bi₂O₃ Bi(OH)₃

Кислота

амфотер.

основание

Востановительная способность падает

c.o. +5

As₂O₅ H₃AsO₄ Sb_2O_5 H[Sb(OH)₆]

"Bi₂O₅" BiO₃-

Окислительная способность возрастает

 E° , B +0,56

+0,54

+1,8

 $5BiO_3^- + 2Mn^{2+} + 14H^{+} = 5Bi^{3+} + 2MnO_4^- + 7H_2$