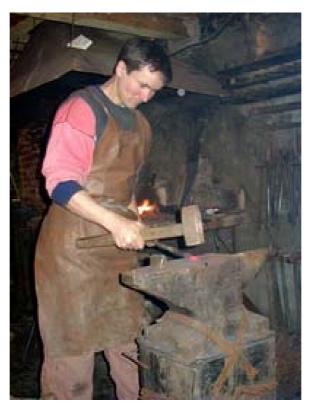
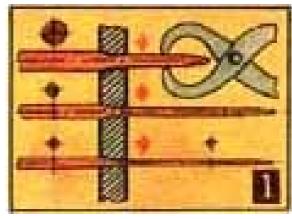
Общие свойства металлов. Щелочные и щелочноземельные металлы

Лекция №12 курса

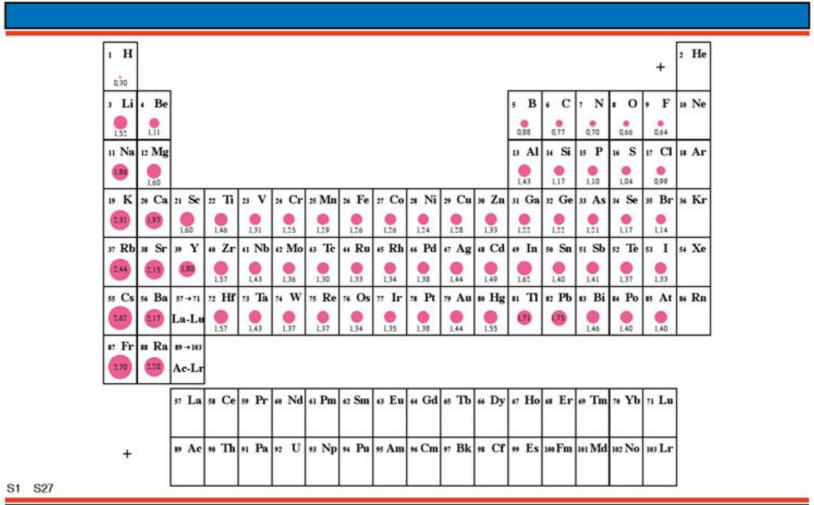

«Общая и неорганическая химия»


для биоинженеров и биофизиков

H & 6	Периодическая таблица элементов																
la.			Мет	аллич	еские	свой	ства		▼								VIIIa
1 H	lla			мета.	плы плоиді	51						IIIa	IVa.	Va	Vla	VIIa	2 He
3	4				таллы							5	6	7	8	9	10
11	Be 12											13	C 14	N 15	16	F 17	Ne 18
Na	Mg	IIIb	ľVb	Vb	Vlb	VIIb	VIIIb			lb	IIb	AI	Si	P	S	Ċi	AΓ
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
К	Ca	Sc	Ti	V	Сг	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Вг	Kr
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Υ	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	1	Xe
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	La	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
87	88	89	104	105	106	107	108	109	110	111	112	113					
Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt	Uun	Uuu	Uub	Uut					
			58	59	60	61	62	63	64	65	66	67	68	69	70	71	
	Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu																
			90	91	92	93	94	95	96	97	98	99	100	101	102	103	
			Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr	

Общие свойства металлов

Металлический блеск, электро- и теплопроводность,

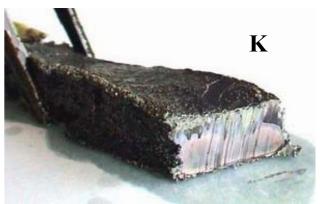

ковкость,

пластичность

Активность металлов

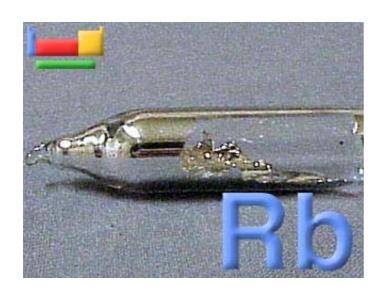
	K	
Оксиды	Ba	Реагируют
не	Sr	с холодной
восстанавли	ваютсяСа	водой
водородом	Na	с выделением
	<u>Li</u>	водорода
	Mg	
	Al	
	Mn	
	Zn	Реагируют с водяным
	Cr	паром с выделением
Оксиды	Fe	водорода
восстанавли	ваются <u>Cd</u>	
до металла	Co	
водородом	Ni	
	Sn	Реагируют с кислотами
	Pb	с выделением водорода
	H	
	Sb	
	As	Реагируют с кислородом
	Bi	с образованием оксидов
	Cu	
	Hg	
	Ag	
Оксиды	Pd	Оксиды
разлагаются	Pt	получают
при нагреван	ии Аи	косвенными методами

Атомные радиусы элементов



Элементы IA группы – щелочные металлы

Свойства простых веществ									
	Li	Na	K	Rb	Cs				
Температура плавления, ⁰ С	180	98	64	38,4	28,4				
Температура кипения, ⁰ С	1345	883	774	688	678				
Радиус атома, пм (10 ⁻¹² м)	155	189	236	248	268				
Радиус иона Э+, пм	68	98	133	149	165				
Плотность, Γ /см ³	0,53	0,97	0,86	1,53	1,88				
Продукт горения в О2	Li ₂ O	Na ₂ O ₂	KO ₂	RbO ₂	CsO ₂				


Получение щелочных металлов

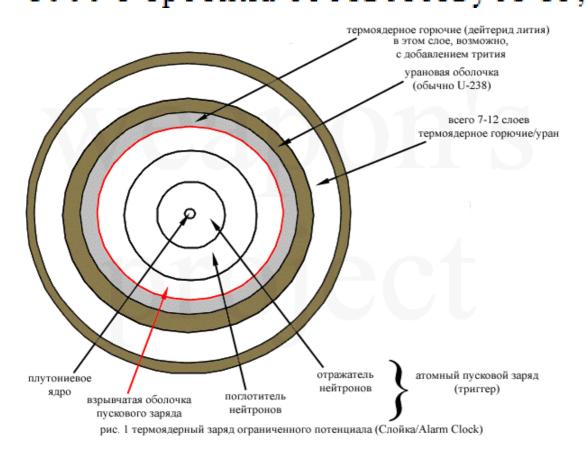
 $2 NaCl = 2 Na + Cl_2$ электролиз в расплаве

$$2 CsCl + Ca = 2 Cs + CaCl_2$$

$$2 NaCl + CaC_2 = 2 Na + CaCl_2 + 2 C$$

$$4 K C l + 4 C a O + S i = 4 K + 2 C a C l_2 + C a_2 S i O_4$$

Сверхсекретный литий (1)


$$D + D -> T + p + 4.03 \text{ MeV}$$

 $D + T -> {}^{4}\text{He} + n + 17.588 \text{ MeV}$

31 Октября 1952 года испытан заряд Міке, мощностью 10.4 Мт, весом 80 т. Термоядерным топливом был жидкий дейтерий. Однако 77% (8 Мегатонн) выхода энергии обеспечил урановый корпус заряда и только остаток (2.4 Мт) приходился на реакцию синтеза.

http://nuclear-weapons.nm.ru/usa/weapons/first-bombs/termonuclear.htm

Сверхсекретный литий (2)

Одноступенчатый термоядерный заряд - проект "Слойка" http://nuclear-weapons. nm.ru/theory/sloika.htm

Сверхсекретный литий (3)

Испытание РДС-6с состоялось 12 августа 1953 г. Энерговыделение - 400 кт. Мощность пускового заряда 40 кт, меньшая часть, 10-20% энергии, выделилось за счет синтеза, остальное - деление нейтронами урановых оболочек.

http://nuclear-weapons.nm.ru/russia/weapons/first-bombs/termonuclear.htm

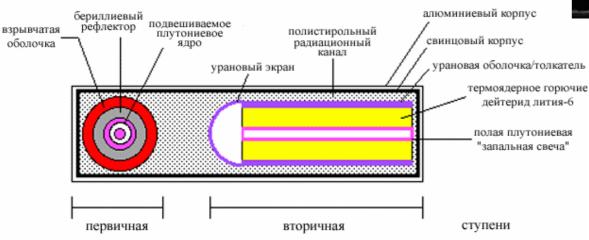


рис. 1 Двухэтапная схема радиационной имплозии Теллера-Улама

Сентябрь 1958 года.

Дважды Герой Соц. труда академик **Андрей Дмитриевич Сахаров** и трижды Герой Соц. труда академик **Игорь ВасильевичКурчатов**

 $http://ggorelik.narod.ru/ADS_Babochki/ADS_TV_2002.htm$

Взрыв 50-мегатонной бомбы (8х2 м, вес 24 т) произведен 30 октября 1961 года в 11 ч. 32 мин. над Новой Землей на высоте 4000 м

http://www.krugosvet.ru/articles/22/1002273/0009475g.htm http://atomas.ru/isp/artika2/ch2 03.htm

Реакции с кислородом и азотом. Пероксиды

$$4 \text{ Li} + O_2 = 2 \text{ Li}_2O$$

$$6 \text{ Li} + N_2 = 2 \text{ Li}_3N$$

$$2 \text{ Na} + O_2 = \text{Na}_2O_2$$

$$K + O_2 = KO_2$$

$$\text{Li}_3N + 3 \text{ H}_2O = 3 \text{ LiOH} + \text{NH}_3$$

$$\text{Na}_2O_2 + 2 \text{ H}_2O = 2 \text{ NaOH} + \text{H}_2O_2$$

$$K_2O_4 + 2 \text{ H}_2O = 2 \text{ KOH} + \text{H}_2O_2 + O_2$$

$$\text{Na}_2O_2 + \text{CO}_2 = \text{Na}_2\text{CO}_3 + 0.5 \text{ O}_2$$

$$K_2O_4 + \text{CO}_2 = K_2\text{CO}_3 + 1.5 \text{ O}_2$$

Дыхательный аппарат замкнутого типа для боевых пловцов (ИДА) и изолирующий противогаз ИП-5

Индивидуальные дыхательные аппараты ИДА http://www.decopro.ru/?m=6&&nid=665

Гидриды и гидроксиды металлов IA группы

$$2 Li + H2 = 2 LiH$$

$$LiH + AlH3 = LiAlH4$$

Гидроксиды щелочных металлов разъедают стеклянную и фарфоровую посуду, их нельзя нагревать и в кварцевой посуде:

$$SiO_2 + 2 NaOH = Na_2SiO_3 + H_2O$$

Гидроксиды натрия и калия **не отщепляют воду** при нагревании вплоть до температур их кипения (более 1300° C).

Соды

- а) кальцинированная сода, безводная сода, бельевая сода или просто сода карбонат натрия $\mathbf{Na_2CO_3}$;
- б) кристаллическая сода кристаллогидрат карбоната натрия $Na_2CO_3\cdot 10H_2O$;
- в) <u>двууглекислая или питьевая</u> гидрокарбонат натрия **NaHCO₃**;
- г) гидроксид натрия **NaOH** называют каустической содой или каустиком

(от греческого каυ σ тіко ζ – каустикос – жгучий, едкий).

Получение соды

Соду в промышленности получают по методу Сольве (1863 г.):

$$NaCl + NH4HCO3 = NaHCO3 + NH4Cl$$

$$2 NaHCO3 = Na2CO3 + CO2 + H2O$$

Аммиак затем выделяют при добавлении гашеной извести:

$$2 NH_4Cl + Ca(OH)_2 = CaCl_2 + 2 H_2O + 2 NH_3$$

Единственный отход - хлорид кальция (XКМ – хлорид кальция модифицированный).

Сода на кухне

При кипячении водного раствора питьевой соды (гидрокарбоната натрия) он превращается в карбонат:

$$2 \text{ NaHCO}_3 = \text{Na}_2\text{CO}_3 + \text{CO}_2 + \text{H}_2\text{O}$$

Карбонат аммония начинает разлагаться уже при 200С:

$$(NH4)2CO3 = NH4HCO3 + NH3$$

Гидрокарбонат аммония используется как разрыхлитель теста («пекарский порошок»), поскольку разлагается при 60° C:

$$NH_4HCO_3 = NH_3 + CO_2 + H_2O$$

Важнейшие химические продукты в 1990 г [*]								
Сталь (Fe)	742 млн.т	Водород Н2	40					
Кокс (С)	361	Едкий натр NaOH	36,5					
Серная кислота H₂SO₄	136	Cepa S	33					
$Caxap C_{12}H_{22}O_{11}$	110	Кальцинированная сода Na₂CO₃	30,5					
Негашеная известь СаО	109	Азотная кислота HNO ₃	27,4					
Аммиак NH ₃	97,3	Полиэтилен $(CH_2)_n$	25,5					
Этанол С ₂ H ₅ ОН	90	Φ осфорная кислота $\mathbf{H_3PO_4}$	25					
Хлор Cl ₂	47	Алюминий Al	23,2					
Этилен C_2H_4	46,7	Соляная кислота НСІ	12					

^{*}Энциклопедия Аванта+, том.17, Химия, М. 2000, стр. 565

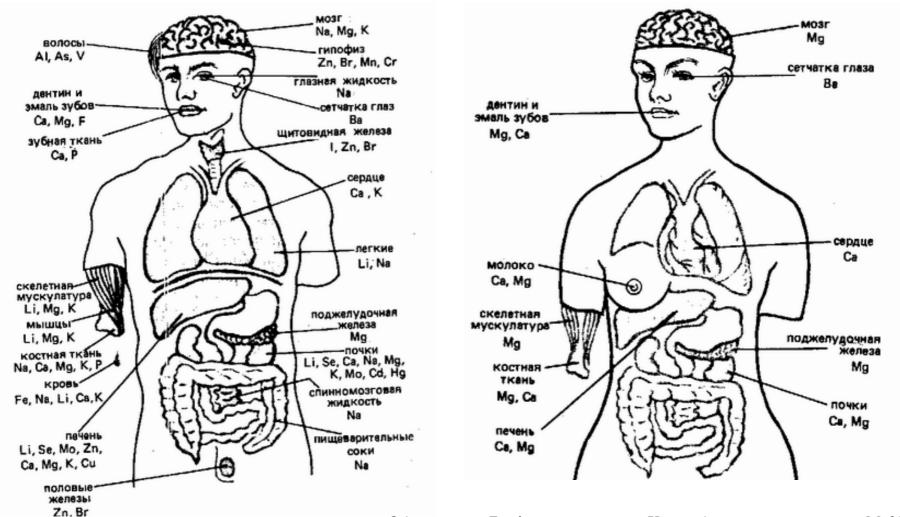
Элементы IIA группы – щелочноземельные металлы

Свойства простых веществ										
	Be	Mg	Ca	Sr	Ba					
Температура плавления, ⁰ С	1284	650	850	770	710					
Температура кипения, ⁰ С	2970	1120	1487	1368	1635					
Радиус атома, пм (10 ⁻¹² м)	113	160	197	215	221					
Радиус иона Э ²⁺ , пм	34	74	104	120	138					

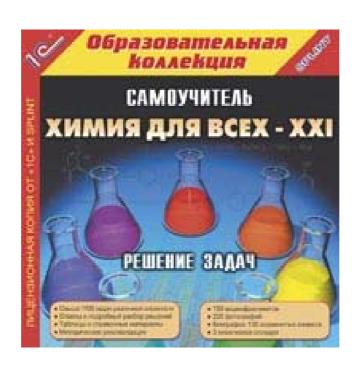
Химия элементов IIA группы

$$Be + H_2O + 2 NaOH = Na_2[Be(OH)_4] + H_2$$

$$Mg + 2 H2O = Mg(OH)2 + H2$$


$$3 Mg + N_2 = Mg_3N_2$$

Жесткость воды. Осадок при кипячении:


$$Ca(HCO_3)_2 = CaCO_3 + CO_2 + H_2O$$

Растворимость гидроксидов (20°C)										
Be(OH) ₂ Mg(OH) ₂ Ca(OH) ₂ Sr(OH) ₂ Ba(OH) ₂										
Произведение растворимости	2*10-15	1,3*10-10	1,4*10-5	3,4*10-4	8*10-3					
Растворимость, моль/л	8*10-6	3*10-4	1,5*10-2	7*10-2	2*10-1					
Растворимость, г/л	3,4*10-4	2,9*10-2	1,1	8,5	34,2					

Содержание в организме человека, %									
Li Na K Rb Cs Be Mg Ca Sr Ba							Ba		
10-4%	0,08	0,23	10-5	10-4	10-7	0,027	1,4	10-3	10-5

В лекции использованы иллюстрации из эл. учебника «1С Химия для всех – XXI»

