Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный университет имени М.В. Ломоносова» Химический факультет

УТВЕРЖДАЮ

Декан химического факультета, Чл.-корр. РАН, профессор

/С.Н. Калмыков/

«20» мая 2019 г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ) Химия и физика твёрдого тела в современном материаловедении

Уровень высшего образования:

Специалитет

Направление подготовки (специальность):

04.05.01 Фундаментальная и прикладная химия

Направленность (профиль) ОПОП:

Химия и технологии веществ и материалов

Форма обучения:

очная

Рабочая программа рассмотрена и одобрена Учебно-методической комиссией факультета (протокол №3 от 13.05.2019)

Рабочая программа дисциплины разработана в соответствии с самостоятельно установленным МГУ образовательным стандартом (ОС МГУ) для реализуемых основных профессиональных образовательных программ высшего образования по направлению подготовки / специальности 04.05.01 «Фундаментальная и прикладная химия» (программа специалитета), утвержденного приказом МГУ от 29 декабря 2018 го- да № 1770 (с изменениями по приказу № 1109 от 11.09.2019).

Год (годы) приема на обучение 2019/2020, 2020/2021

- 1. Место дисциплины (модуля) в структуре ООП: вариативная часть ООП, блок ПД.
- 2. Планируемые результаты обучения по дисциплине, соотнесенные с планируемыми результатами освоения образовательной программы (компетенциями выпускников)

Компетенция	Индикаторы	Планируемые результаты обучения по дисциплине (модулю)
ОПК-1.С. Способен решать современные проблемы фундаментальной и прикладной химии, используя методологию научного подхода и систему фундаментальных химических понятий и законов	ОПК-1.С.1. Воспринимает информацию химического содержания, систематизирует и анализирует ее, оценивает актуальность и степень новизны данных	Уметь: анализировать научную литературу с целью выбора направления и методов, применяемых в исследовании по теме выпускной квалификационной работы Уметь: самостоятельно составлять план исследования Владеть: навыками поиска, критического анализа, обобщения и систематизации научной информации, постановкицелей исследования и выбора оптимальных путей и методов их достижения
СПК-1.С. Способен использовать знание состава, свойств и областей применения основных классов материалов при решении профессиональных задач	СПК-1.С.1 Строит корреляции «состав-структура—свойство» для прогноза условий получения новых веществ и материалов с заданным набором параметров	Знать: составы, физико-химические свойства и области применения основных классов современных материалов Уметь: выбирать методы и методики получения веществ и материалов с заданным набором параметров

3. Объем дисциплины в зачетных единицах с указанием количества академических или астрономических часов, выделенных на контактную работу обучающихся с преподавателем (по видам учебных занятий) и на самостоятельную работу обучающихся:

Объем дисциплины (модуля) составляет 3 зачетных единицы, всего 108 часов, из которых 76 часов составляет контактная работа студента с преподавателем (36 часов занятия лекционного типа, 36 часов - занятия семинарского типа, 4 часа – промежуточный контрольуспеваемости), 32 часа составляет самостоятельная работа студента.

4. Входные требования для освоения дисциплины (модуля), предварительные условия.

Обучающийся должен

Знать:. основные законы общей физики и основ квантовой механики

Уметь: активно использовать методы математического анализа при обработке полученных результатов

Владеть: основными теоретически знаниями по физической и неорганической химии, применять основные законы химии при обсуждении полученных результатов

5. Содержание дисциплины (модуля), структурированное по темам.

		<u> </u>		4						
Наименование и краткое содержание разделов и тем дисциплины (модуля), форма промежуточной аттестации по дисциплине (модулю)	Всего (часы)	В том числе Контактная работа (работа во взаимодействии с преподавателем), часы из них						Самостоятельная работа обучающегося, часы из них		
		Занятия лекционного типа	Занятия семинарского типа	Групповые консульта- ции	Индивидуальные кон- сультации	Учебные занятия, направленные на проведение текущего контроля успеваемости, промежуточной аттестации	Bcero	Выполнение домашних заданий	Подготовка рефератов и т.п	Bcero
Раздел 1. Введение. Методы получения монокристалов.	5	2	2				4		1	1
Раздел 2. Описание структуры твердых тел.	10	4	4				8	1	1	2
Раздел 3. Определение структуры кристалла.	7	2	2				4	2	1	3
Раздел 4. Химическая связь в твердых телах.	7	2	2				4	2	1	3
Раздел 5. Реальная структура твердых тел.	11	4	4				8	1	2	3
Раздел 6. Тепловые свойства твердых тел.	8	3	3				6	1	1	2
Раздел 7. Электроны в твердых телах.	15	6	6	4			12	2	1	3

Раздел 8. Диффузия в твердых телах.	7	2	2			4	2	1	3
Раздел 9. Механические свойства твердых тел.	9	3	3			6	2	1	3
Раздел 10. Аморфные материалы.	7	2	2			4	1	2	3
Раздел 11. Сверхпроводимость.	11	4	4			8	1	2	3
Раздел 12. Магнитные свойства кристаллов.	7	2	2			4	1	2	3
Промежуточная аттестация <u>экза-</u> <u>мен</u>	4				4	4			
Итого	108	36	36		4	76	16	16	32

6. Образовательные технологии:

- -применение компьютерных симуляторов, обработка данных на компьютерах, использование компьютерных программ, управляющих приборами;
- -использование средств дистанционного сопровождения учебного процесса;
- -преподавание дисциплин в форме авторских курсов по программам, составленным на основе результатов исследований научных школ МГУ.

7. Учебно-методические материалы для самостоятельной работы по дисциплине (модулю):

Студентам предоставляется программа курса, план занятий и задания для самостоятельной работы, презентации к лекционным занятиям.

8. Ресурсное обеспечение:

• Перечень основной и вспомогательной учебной литературы ко всему курсу

Со всех компьютеров МГУ организован доступ к полным текстам научных журналов и книг на русском и иностранных языках. Доступ открыт по IP-адресам, логин и пароль не требуются: http://nbmgu.ru/

Основная литература

1. Вест А. Химия твердого тела. Теория и приложения. Ч.1: М.: Мир,₅1988, 558с.

- 2. Вест А. Химия твердого тела и ее приложения. Ч.2: М.: Мир, 1988, 336с.
- 3. Бутягин П. Ю. Химическая физика твердого тела. М.: Изд-во Моск. ун-та, 2006, 272с.
- 4. Киттель Ч. Введение в физику твердого тела. М.: Наука, 1978, 792с.
- 5. Чеботин В. Н. Физическая химия твердого тела. М.: 1982, 320с.
- 6. Павлов П.В., Хохлов А.Ф. Физика твердого тела. М.: Высшая школа, 2000, 494 с
- 7. Урусов В. С., Еремин Н.Н. Кристаллохимия. Краткий курс: Учебник. М.: Изд-во Моск. ун-та, 2010, 256 с.
- 8. Гусев А.И. Наноматериалы, наноструктуры, нанотехнологии. М.: ФИЗМАТЛИТ, 2005, 416с.
- 9. А.Роуз-Инс, Е.Родерик. Введение в физику сверхпроводимости. М.: Мир, 1972, 272с.

Дополнительная литература

- 1. Шаскольская М.П. Кристаллография. М.: Высшая школа, 1976, 391с.
- 2. Асланов Л.А. Инструментальные методы рентгеноструктурного анализа. М.: Изд-во Моск. ун-та 1983, 288с.
- 3. Тонков Е.Ю. Фазовые превращения при высоких давлениях т. 1,2, М.: Металлургия, 1988.
- 4. Физические величины: Справочник. Под редакцией И.С. Григорьева, Е.З. Мейлихова. М.: Энергоатомиздат, 1991, 1232 с.
- 5. Мэтьюз Ф., Ролингс Р. Композитные материалы. Механика и технология. М.: Техносфера, 2004, 408с.
- 6. Попова С.В., Бенделиани Н.А., Высокое давление. М.: Наука., 1974, 170с.
- 7. Урусов В. С. Теоретическая кристаллохимия. М.: Изд-во Моск. ун-та, 1987, 275 с.
- 8. Фахльман Б. Химия новых материалов и нанотехнологии. Долгопрудный: Изд-во Интеллект, 2011, 464с.
- 9. Гантмахер В. Ф. Электроны в неупорядоченных средах. М.: ФИЗМАТЛИТ. 2013. 288 с.
- 10. Хенней Н. Химия твердого тела. М.: Мир: 1971, 223с.

Материально-техническое обеспечение: специальных требований нет, занятия проводятся в обычной аудитории, оснащенной доской и мелом (фломастерами)

- 9. Язык преподавания русский
- 10. Преподаватели:

Ионов Сергей Геннадьевич, профессор, доктор физико-математических наук, ionov@highp.chem.msu.ru.

Фонды оценочных средств, необходимые для оценки результатов обучения

Образцы оценочных средств для текущего контроля усвоения материала и промежуточной аттестации - экзамена. На экзамене проверяется достижение индикаторов, перечисленных в п.2.

Вопросы к экзамену

- 1. Методы получения монокристаллов.
- 2. Методы получения аморфных материалов.
- 3. Классификация твердых тел по характеру расположения атомов.
- 4. Квазикристаллы и их применение.
- 5. Определение структуры кристалла с использованием дифракционных методов
- 6. Основные типы связей в твердых телах.
- 7. Аллотропия и полиморфизм. Политипия. Изоморфизм.
- 8. Полиморфные превращений химических веществ в условиях высокого давления.
- 9. Определение структуры кристалла с использованием дифракционных методов.
- 10. Механические свойства твердых тел.
- 11. Кинетическая (флуктуакционная) теория прочности твердых тел.
- 12. Методы изучения механических свойств твердых тел.
- 13. Получение материалов интенсивной пластической деформацией.
- 14. Акустические и оптические фононы.
- 15. Тепловое расширение кристаллов.
- 16. Теплоемкость кристалла. Зависимость теплоемкости от температуры. Закон Дюлонга и Пти. Модели Эйнштейна и Дебая для теплоемкости твердых тел.
- 17. Теплопроводность и тепературопроводность твердых тел.
- 18. Теплопроводность диэлектриков.
- 19. Теплопроводность металлов.
- 20. Зонная теория твердого тела.
- 21. Теория металлов Друде-Лоренца.
- 22. Методы определения удельного электросопротивления и эффекта Холла в твердых телах.
- 23. Основы теории перколяции.
- 24. Синтетические металлы на основе органических солей и интеркалированных соединений графита и дихалькогенидов металлов.
- 25. Дефекты по Шоттки. Равновновесная концентрации дефектов.
- 26. Дефекты по Френкелю. Температурная зависимость концентрации дефектов
- 27. Способы описания дефектных кристаллов квазихимическим методом.
- 28. Краевые, винтовые и смешанные дислокации.
- 29. Радиационные дефекты.
- 30. Дислокации и рост кристаллов. Вискеры.
- 31. Механизмы диффузии в кристаллах. І-ый и ІІ-ой законы Фика.

- 32. Эффект Киркендаля.
- 33. Эксперементальные методы измерения коэффициента диффузии.
- 34. Магнитные свойства кристаллов. Намагниченность, восприимчивость Природа диамагнетизма ,парамагнетизма, ферромагнетизма. Магнитные жидкости.
- 35. Сверхпроводимость. Основные свойства сверхпроводников.
- 36. Сверхпроводники 1-го и 2-го рода.
- 37. Основные положения микроскопической теории сверхпроводимости БКШ (Бардина- Купера- Шрифера).
- 38. Высокотемпературные сверхпроводники. Модели Д. Литтла и В. Л. Гинзбурга.
- 39. Технические применения сверхпроводников.

Методические материалы для проведения процедур оценивания результатов обучения

Шкала оценивания знаний, умений и навыков является единой для всех дисциплин (приведена в таблице ниже)

ШКАЛА И КРИТЕРИИ ОЦЕНИВАНИЯ РЕЗУЛЬТАТА ОБУЧЕНИЯ по дисциплине (модулю)							
Оценка	2	3	4	5			
Результат							
Знания	Отсутствие	Фрагментарные знания	Общие, но не структурированные	Сформированные систематические			
	знаний		знания	знания			
Умения	Отсутствие	В целом успешное, но не	В целом успешное, но содержащее	Успешное и систематическое уме-			
	умений	систематическое умение	отдельные пробелы умение (допус-	ние			
			кает неточности непринципиально-				
			го характера)				
Навыки (владе-	Отсутствие на-	Наличие отдельных навы-	В целом, сформированные навыки,	Сформированные навыки, приме-			
ния)	выков	КОВ	но не в активной форме	няемые при решении задач			

РЕЗУЛЬТАТ ОБУЧЕНИЯ	ФОРМА ОЦЕНИВАНИЯ
по дисциплине (модулю)	·
Знать: составы, физико-химические свойства и области применения основных классов современных	мероприятия текущего контроля ус-
материалов	певаемости, устный опрос на экзамене
Уметь анализировать научную литературу с целью выбора направления и методов, применяемых в	мероприятия текущего контроля ус-
исследовании по теме выпускной квалификационной работы,	певаемости, устный опрос на экзамене
Уметь: самостоятельно составлять план исследования	
Уметь: выбирать методы и методики получения веществ и материалов с заданным набором пара-	
метров	

Владеть навыками поиска, критического анализа, обобщения и систематизации научной информации, постановки целей исследования и выбора оптимальных путей и методов их достижения	мероприятия текущего контроля ус- певаемости, устный опрос на экзамене