Федеральное государственное бюджетное образовательное учреждение высшего образования «Московский государственный университет имени М.В. Ломоносова» Химический факультет

УТВЕРЖДАЮ

Декан химического факультета, Акад. РАН, профессор

/В.В. Лунин/

Blue

«27» февраля 2017 г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

Теория и практика спектроскопии ядерного магнитного резонанса

Уровень высшего образования:

Специалитет

Направление подготовки (специальность):

04.05.01 Фундаментальная и прикладная химия

Направленность (профиль) ОПОП:

Химия ионных и молекулярных систем

Форма обучения:

очная

Рабочая программа рассмотрена и одобрена Учебно-методической комиссией факультета (протокол №1 от 27.01.2017) Рабочая программа дисциплины разработана в соответствии с самостоятельно установленным МГУ образовательным стандартом (ОС МГУ) для реализуемых основных профессиональных образовательных программ высшего образования по направлению подготовки / специальности 04.05.01 «Фундаментальная и прикладная химия» (программа специалитета), утвержденного приказом МГУ от 22 июля 2011 года № 729 (в редакции приказов МГУ от 22 ноября 2011 года № 1066, от 21 декабря 2011 года № 1228, от 30 декабря 2011 года № 1289, от 27 апреля 2012 года № 303, от 30 декабря 2016 года № 1671).

Год (годы) приема на обучение <u>2014/2015</u>, <u>2015/2016</u>, <u>2016/2017</u>, <u>2017/2018</u>, <u>2018/2019</u>

- 1. Наименование дисциплины (модуля) Теория и практика спектроскопии ядерного магнитного резонанса
- 2. Уровень высшего образования специалитет.
- 3. Направление подготовки: 04.05.01 Фундаментальная и прикладная химия.
- 4. Место дисциплины (модуля) в структуре ООП: вариативная часть ООП, блок ПД.

5 Планируемые результаты обучения по дисциплине, соотнесенные с планируемыми результатами освоения образовательной программы (компетенциями выпускников)

Компетенция	Планируемые результаты обучения по дисциплине (модулю)
ОПК-3.С. Способность использовать методы	Знать: теоретические основы физических методов изучения состава и свойств
регистрации и обработки результатов экспериментов, в	веществ и материалов
том числе, полученных на современном научном	Знать: возможности и ограничения применения физических методов
оборудовании	исследования химических объектов
	Уметь: проводить измерения на научном оборудовании по разработанным
	методикам
СПК-3.С. Способность владеть навыками использования	Уметь : использовать программные средства, компьютерные сети и ресурсы
программных средств и работы в компьютерных сетях,	интернет для решения общеобразовательных и профессиональных задач
использования ресурсов Интернет; владеть основными	Владеть: навыками использования программных средств и работы в
методами, способами и средствами получения, хранения,	компьютерных сетях, использования ресурсов Интернет
переработки информации	
СПК-5.С: Способность применять основные законы	Знать: основные базы данных, используемые в практике научных
химии при обсуждении полученных результатов, в том	исследований химической направленности
числе с привлечением информационных баз данных	Знать: методологию поиска информации в открытых источниках и
	специализированных базах данных
	Уметь: пользоваться информационными базами данных для решения задач
	профессиональной деятельности
	Владеть: навыками поиска данных в открытых источника (в том числе, в
	информационных базах данных) и применения их при решении практических
	химических задач
СПК-1.С: Способность на основе фундаментальных	Знать: современные способы обработки и представления литературных и
химических знаний охватывать полную схему	других данных
межпредметных и междисциплинарных	Уметь : анализировать экспериментальные данные, полученные из различных
взаимодействий при планировании и проведении	источников и имеющие различную структуру, с использованием табличных
научного эксперимента, на практике используя	редакторов и специализированного программного обеспечения.
информационные и вычислительные технологии,	

современные методы и оборудование для синтеза и анализа

6. Объем дисциплины в зачетных единицах с указанием количества академических или астрономических часов, выделенных на контактную работу обучающихся с преподавателем (по видам учебных занятий) и на самостоятельную работу обучающихся:

Объем дисциплины (модуля) составляет 4 зачетных единицы, всего 144 часа, из которых 84 часа составляет контактная работа студента с преподавателем (36 часов - занятия лекционного типа, 36 часов - занятия семинарского типа, 8 часов – групповые консультации, 4 часа - мероприятия промежуточной аттестации), 60 часов составляет самостоятельная работа учащегося.

7. Входные требования для освоения дисциплины (модуля), предварительные условия.

Обучающийся должен

Знать: основы механизмов химических реакций;

Уметь: применять информационные технологии в анализе экспериментальных данных;

Владеть: практическими навыками эффективной работы с общеупотребимым и научным программным обеспечением.

8. Содержание дисциплины (модуля), структурированное по темам.

Наименование и краткое	Всего		В том числе								
содержание разделов и тем дисциплины (модуля), форма промежуточной аттестации по дисциплине	(часы)							работа часы	• • •		
(модулю)		Занятия лекционного типа	Занятия семинарского типа	Групповые консультации	Индивидуальные консультации	Учебные занятия, направленные на проведение текущего контроля успеваемости, промежуточной аттестации	Bcero	Выполнение домашних заданий	Подготовка рефератовит.п	Bcero	
Тема 1 Информационные ресурсы по теме ЯМР. Что и зачем изучается	14	6	6				12	2		2	

в рамках программы. Применение ЯМР в органической химии, преимущества и недостатки									
метода. Тема 2 Ядра в магнитном поле и их экранирование ядер электронами и химическим окружением. Химический сдвиг, единицы измерения. Химические сдвиги ¹ Н и ¹³ С. Спин-спиновое взаимодействие.	18	6	6			12	2	4	6
Тема 3 Основные протон- протонные КССВ. Спектры, снятые на спектрометрах с разной рабочей частотой. Примеры спинового расщепления. Спектры молекул с плоскостью симметрии. Магнитный момент ядра и вектор макроскопической намагниченности.	20	6	6	2		14	2	4	6
Тема 4 Гетероядерное спинспиновое взаимодействие. Сателлиты ¹³ С. Понятие широкополосной развязки. Основные протон-углеродные КССВ. Зависимость от гибридизации. Спектры ЯМР смесей. Выявление подспектров компонентов смеси. Определение количественного состава смеси. Зависимость КССВ от структуры.	18	6	6	2		14	2	2	4
Тема 5 Классический и	18	6	6	2		14		4	4

импульсный ЯМР. Преобразование Фурье. Схема простейшего эксперимента ЯМР. Накопление FID'a. Основные параметры одномерного эксперимента ЯМР.									
Тема 6 Двумерная корреляционная спектроскопия. Ядерный эффект Оверхаузера. Практические аспекты ЯМР: операции с FID'ом до преобразования Фурье; экспоненциальное и Гауссово умножение; принципиальная схема спектрометра ЯМР.		6	6	2		14	2	4	6
Промежуточная аттестация: <u>экзамен</u>	36				4	4	32		32
Итого	144	36	36	8	4	84	42	18	60

9. Образовательные технологии:

- -применение компьютерных симуляторов, обработка данных на компьютерах, использование компьютерных программ, управляющих приборами;
- -использование средств дистанционного сопровождения учебного процесса;
- -преподавание дисциплин в форме авторских курсов по программам, составленным на основе результатов исследований научных школ МГУ.

10. Учебно-методические материалы для самостоятельной работы по дисциплине (модулю):

Виды самостоятельной работы: в домашних условиях, в читальном зале библиотеки, на компьютерах с доступом к базам данных и ресурсам Интернет, в лабораториях с доступом к лабораторному оборудованию и приборам.

Самостоятельная работа подкрепляется учебно-методическим и информационным обеспечением, включающим учебно-методические пособия, конспекты лекций, учебное и научное программное обеспечение, ресурсы Интернет. Материал курса базируется на современной литературе из общепризнанных международных источников.

11. Ресурсное обеспечение:

• Перечень основной и вспомогательной учебной литературы ко всему курсу

Основная литература

- 1) Тоукач Ф.В. Спектроскопия ЯМР в органической химии. Альбом схем. Метод. материалы. http://toukach.ru/rus/
- 2) Тоукач Ф.В. Спектроскопия ЯМР в органической химии. Примеры спектров. Метод. материалы. http://toukach.ru/rus/
- 3) Тоукач Ф.В. Вопросы и задания к курсу спектроскопии ЯМР в органической химии. Метод. материалы. http://toukach.ru/rus/
- 4) Тоукач Ф.В., Беляков П.А. Применение двумерной спектроскопии ЯМР в органической химии. Метод. материалы. http://toukach.ru/rus/
- 5) Э. Дероум «Современные методы спектроскопии ЯМР для химических исследований». М.: Мир, 1992. 403 с.

Дополнительная литература

- 1) Х. Гюнтер "Введение в курс спектроскопии ЯМР", М., Мир, 1984
- 2) K. Denk "NMR spectroscopy", University of Guelph, 2005
- 3) E. Becker "High resolution NMR: therory and chemical applications", Academic Press, 2000
- 4) J. Lambert, E. Mazzola "Nuclear magnetic resonance spectroscopy", Pearson Education Inc., 2006.
- 5) Rahman, M. Choudhary "Solving problems with NMR spectroscopy", Karachi, 2009.
- Материально-техническое обеспечение: специальных требований нет, занятия проводятся в обычной аудитории, оснащенной доской и мелом (маркерами)
- 12. Язык преподавания русский
- 13. Преподаватели: к.х.н. Новиков Р.А., novikovfff@bk.ru

Фонды оценочных средств, необходимые для оценки результатов обучения

Образцы оценочных средств для текущего контроля усвоения материала и промежуточной аттестации - экзамена. На экзамене проверяется достижение промежуточных индикаторов компетенций, перечисленных в п.5.

Вопросы к экзамену:

- 1. Какая характеристика сигналов в спектре ЯМР соответствует количеству атомов, давших сигнал?
- 2. Какая характеристика сигналов в спектре ЯМР в наибольшей степени коррелирует с распределением электронной плотности по молекуле?
- 3. В чем чаще всего измеряются химические сдвиги?
- 4. В чем чаще всего измеряются константы спин-спинового взаимодействия?

- 5. Какие атомы называются "магнитно-эквивалентными"?
- 6. Каковы границы применимости треугольника Паскаля?
- 7. Какой сигнал должен дать протон с двумя одинаковыми соседями-протонами близко и одним далеко?
- 8. Какой сигнал должен дать протон с тремя одинаковыми соседями-протонами далеко и одним близко?
- 9. Как будет выглядеть сигнал протона в соединении H2N-CO-CHD2?
- 10. Как будет выглядеть сигнал выделенного протона в соединении Br2HC-CHD-COOH?
- 11. Что такое изотопный сдвиг?
- 12. Какова должна быть форма сигналов протонов в 3-бромтолуоле, в предположении, что все мета-КССВ равны друг другу, и все орто-КССВ равны друг другу?
- 13. В каких случаях "крыша" сигналов системы из нескольких протонов получается более крутой?
- 14. Какие структурные особенности молекул приводят к спектрам не первого порядка?
- 15. Относительно чего измеряются химические сдвиги?
- 16. Как влияет гибридизация атома углерода на его химический сдвиг?
- 17. Как влияет электроотрицательность соседних атомов на химический сдвиг?
- 18. Каковы типичные значения химичсеких сдвигов в ароматике?
- 19. Каковы характерные значения КССВ через разное число связей в бензольном кольце?
- 20. Каковы характерные значения геминальной КССВ в замещенном этилене?
- 21. Каковы характерные значения КССВ через три связи в алифатике?
- 22. Почему КССВ через 4 связи в алифатике наблюдаются редко, а в ароматике часто?
- 23. Как изменится абсолютное значение геминальной КССВ с увеличением валентного угла центрального атома от 105° до 117° ?
- 24. Как изменяется величина вицинальной КССВ с увеличением торсионного угла между крайними связями от 0⁰ до 180⁰?
- 25. Как влияют электроотрицательные заместители на величины геминальных и вицинальных КССВ?
- 26. Как влияет длина средней связи на величину вицинальной КССВ?
- 27. От чего зависит энергетическая разница между спиновыми состояниями ядер?
- 28. От чего зависит частота ядерного магнитного резонанса тех или иных ядер?
- 29. Какие значимые в химии природных соединений ядра являются магнитно-активными и имеют спин, равный 1/2?
- 30. Каковы особенности спектроскопии ЯМР по квадрупольным ядрам?
- 31. Чем отличается абсолютная чувствительность ЯМР от относительной?
- 32. Спектры каких спиновых систем требуют для точного предсказания квантовомеханического формализма?
- 33. Чем продольная релаксация отличается от поперечной?
- 34. Какой тип релаксации всегда происходит быстрее другого типа релаксации?
- 35. Как быстрая релаксация проявляет себя в спектрах?
- 36. Что является причиной появления сателлитов 13С в протонном спектре?
- 37. Как можно повлиять на эффекты, привносимые в спектр квадрупольными ядрами?

- 38. Чем цифровой сигнал отличается от аналогового?
- 39. Что такое амплитуда, частота и фаза сигнала?
- 40. Как влияет на спектр ЯМР умножение FID на экспоненту?
- 41. Как влияет на спектр ЯМР умножение FID на функцию Гаусса?
- 42. В каких случаях применяется обрезание FID и аподизация?
- 43. Как можно получить FID из спектра ЯМР?
- 44. Как можно получить частотный спектр ЯМР из записанного во времени электромагнитного отклика на импульс?
- 45. Что такое цифровое разрешение?
- 46. Каковы основные особенности подхода HOSE применительно к предсказанию спектров ЯМР?
- 47. Каковы основные особенности нейронных сетей применительно к предсказанию спектров ЯМР?
- 48. Как рабочая частота спектрометра влияет на вид спектров ЯМР?
- 49. В каком устройстве происходит облучение образца переменным электромагнитным полем?
- 50. В каком устройстве происходит считывание электромагнитного отклика образца на импульсное облучение?
- 51. От каких параметров накопления зависит отношение сигнал/шум?
- 52. Как связаны время накопления, ширина спектрального окна и число точек FID?
- 53. Какому критерию должна удовлетворять частота выборки для избежания отраженных сигналов?
- 54. Чем цифровое разрешение отличается от естественного?
- 55. Какое устройство позволяет снизить требования к АЦП в миллионы раз?
- 56. Как подавляются отраженные сигналы в спектрах ЯМР?
- 57. Зачем нужно квадратурное детектирование?
- 58. Каково назначение шиммирующих катушек?
- 59. Каково назначение системы LOCK?
- 60. Зачем нужно вращение образца вокруг оси 0z?
- 61. Какова типичная полуширина линии в рутинных экспериментах для образца в DMSO-d6?
- 62. Что такое фазовый цикл?
- 63. Какими преимуществами и недостатками обладает DMSO-d6 как растворитель для ЯМР?
- 64. Какими преимуществами и недостатками обладает CDCl3 как растворитель для ЯМР?
- 65. О чем свидетельствует наличие градиента несимметричных искажений формы линии?
- 66. Каковы преимущества и недостатки 5-мм ампул по сравнению с 10 мм?
- 67. Как вязкость растворителя влияет на спектр ЯМР?
- 68. Сколько вещества нужно для получения спектра 13С за несколько часов?
- 69. Почему сигналы NH2 и OH групп часто бывают уширены?
- 70. Что происходит со спектром ЯМР при нагревании образца, атомы которого неэквивалентны лишь с учетом конформации?
- 71. Что происходит со спектром ЯМР при добавлении воды в образец, имеющий подвижные протоны?

- 72. Каково характеристическое время ЯМР?
- 73. Что такое температура коалесценции?
- 74. Как с помощью ЯМР измерить барьер перехода между двумя состояниями молекулы?
- 75. Почему протонный спектр этанола не зависит от конформации?
- 76. Почему при подкислении этанола пропадает КССВ с гидроксильной группой?
- 77. Как посчитать усредненный химический сдвиг двух состояний протона?
- 78. На какие параметры спектра ЯМР влияет длина импульса и каким образом?
- 79. Как длина импульса соотносится с его мощностью?
- 80. Зачем нужна задержка между импульсом и накоплением?
- 81. Зачем нужна задержка между сканами?
- 82. На какие параметры спектра ЯМР влияет скорость спадания FID и от чего она зависит?
- 83. От чего зависит скорость вращения используемой в импульсном ЯМР вращающейся системы координат?
- 84. От чего зависит угол поворота ВМН сразу после импульса во вращающейся системе координат?
- 85. Что происходит с заселенностью спиновых уровней при облучении образца 90⁰-импульсом?
- 86. Что происходит с вектором макроскопической намагниченности при облучении образца 180⁰-импульсом?
- 87. Каковы преимущества импульсного ЯМР перед ЯМР с непрерывной разверткой?
- 88. Какая функция приближенно описывает спадание огибающей FID?
- 89. Как называются осцилляции проекции ВМН на горизонтальную плоскость?
- 90. Расфокусировка каких компонент ВМН устраняется спиновым эхом?
- 91. Почему спиновое эхо не рефокусирует гетероядерные мультиплеты?
- 92. Какой части комплексного Фурье-образа соответствует сигнал поглощения?
- 93. Функцией какого типа описывается сигнал в резонансной катушке, вызванный вращающимся магнитным моментом?
- 94. Каковы обязательные атрибуты импульсной последовательности в корреляционных экспериментах?
- 95. К чему приводит широкополосная развязка от протонов в спектре 13С?
- 96. Зачем в эксперименте Gated включают развязку перед, но не во время накопления?
- 97. Какую информацию можно извлечь из спектров селективного двойного резонанса?
- 98. В каких условиях двойной резонанс лучше COSY?
- 99. Какую информацию можно извлечь из спектров COSY?
- 100. Какую дополнительную информацию (по сравнению с COSY) дают корреляционные эксперименты с переносом когерентности?
- 101. Какую информацию можно извлечь из спектров HSQC?
- 102. Какую информацию можно извлечь из спектров НМВС?
- 103. В каких условиях одномерный НМВС лучше двумерного?
- 104. Какую информацию можно извлечь из спектров TOCSY?

- 105. Какую информацию можно извлечь из спектров DOSY?
- 106. Из каких экспериментов можно извлечь гетероядерные КССВ?
- 107. В чем преимущества эксперимента INEPT перед SPI?
- 108. Чем отличаются спектры APT от спектров INEPT?
- 109. Какие существуют гетероядерные двумерные эксперименты с переносом когерентности?
- 110. Для ядер какого типа особенно эффективны эксперименты с переносом поляризации?
- 111. Какую информацию можно извлечь из спектров ROESY?
- 112. Какой тип релаксации приводит к появлению ЯЭО?
- 113. На каком межатомном расстоянии наблюдается ЯЭО?
- 114. Каково максимально возможное значение ядерного эффекта Оверхаузера?
- 115. Как ЯЭО зависит от частоты спектрометра?
- 116. Как соотносится фаза диагональных пиков и кросс-пиков ядерного эффекта Оверхаузера в спектрах ROESY?
- 117. Как соотносится фаза кросс-пиков химического обмена и кросс-пиков ядерного эффекта Оверхаузера в спектрах NOESY?
- 118. Почему наблюдение ЯЭО в одномерном варианте проводится в разностном режиме?

Методические материалы для проведения процедур оценивания результатов обучения

Шкала оценивания знаний, умений и навыков является единой для всех дисциплин (приведена в таблице ниже)

ШКАЛА И КРИТЕРИИ ОЦЕНИВАНИЯ РЕЗУЛЬТАТА ОБУЧЕНИЯ по дисциплине (модулю)									
Оценка	2	3	4	5					
Результат									
Знания	Отсутствие	Фрагментарные знания	Общие, но не структурированные	Сформированные					
	знаний		знания	систематические знания					
Умения	Отсутствие	В целом успешное, но не	В целом успешное, но содержащее	Успешное и систематическое					
	умений	систематическое умение	отдельные пробелы умение	умение					
			(допускает неточности						
			непринципиального характера)						
Навыки	Отсутствие	Наличие отдельных	В целом, сформированные навыки,	Сформированные навыки,					
(владения)	навыков	навыков	но не в активной форме	применяемые при решении задач					

РЕЗУЛЬТАТ ОБУЧЕНИЯ	ФОРМА ОЦЕНИВАНИЯ
по дисциплине (модулю)	
Знать: теоретические основы современных физико-химических методов исследования	мероприятия текущего контроля
структуры и свойств веществ и материалов	успеваемости, устный опрос на
Знать: возможности и ограничения применения физических методов исследования химических	экзамене
объектов	
Знать: современные способы обработки и представления литературных и других данных	
Уметь: проводить математическую обработку физико-химических данных, обобщать полученные	мероприятия текущего контроля
результаты	успеваемости, устный опрос на
	экзамене
Владеть: методами обработки качественных и количественных результатов спектральных	мероприятия текущего контроля
исследований для интерпретации результатов эксперимента, в том числе для направленного	успеваемости, устный опрос на
синтеза	экзамене