ангиж и кимих

Задача 1 (авторы Бачева А.В., Мажуга А.Г.)

1. Будет получена смесь трипептидов:

$$\begin{array}{c} 0 \\ H_{2}N-CH^{-1}C-N-CH^{-1}C-NH-CH^{-1}C-OH \\ CH_{2} \\ CH_{3} \\ CH_{3} \\ CH_{3} \\ CH_{2} \\ CH_{3} \\ CH_{3} \\ CH_{2} \\ CH_{3} \\ CH_{3} \\ CH_{2} \\ CH_{3} \\ CH_{2} \\ CH_{3} \\ CH_{3} \\ CH_{3} \\ CH_{3} \\ CH_{3} \\ CH_{3} \\ CH_{4} \\ CH_{4} \\ CH_{4} \\ CH_{5} \\ CH$$

При нейтральных значениях pH, то есть около pH = 7, будут протонироваться аминогруппы (-NH₂ превращается в -NH₃⁺) и депротонироваться карбоксильные группы (-COOH превращается в -COO⁻), и получается заряженный трипептид общей формулы H_3N^+ –CHR₁–CO–NH–CHR₂–CO–NH–CHR₃–COO⁻ с ионизированными амино- и карбоксильной группами.

2. Поскольку, как указано в задании, отщепление происходит последовательно с N-конца, то сначала в цепи стоял фенилаланин, затем тирозин, и последний – изолейцин. Следовательно, был проанализирован трипептид следующего состава:

Фенилаланилтирозилизолейцин, или, записывая аминокислоты трехбуквенным кодом, Phe-Tyr-Ile.

3. Чтобы синтезировать трипептид методом Меррифилда, нужно осуществить следующие превращения:

4. На стадии отщепления первой аминокислоты протекали следующие реакции:

Аналогично, на стадии отщепления второй аминокислоты:

5. После дансилирования исходного трипептида и продуктов его деградации по Эдману были получены следующие вещества:

Система оценивания

1.	По 1 б. за каждый трипептид, и 2 б. за заряженные группы	8 б.
2.	2 б. за правильную последовательность аминокислот в пептиде	2 б.
3.	3 б. за правильно выбранные производные аминокислот и 2 б. за правильную	
	последовательность аминокислот в полученном пептиде	5 б.
4.	По 2 б. за правильно изображенные фенилтиокарбамоильное производное,	
	производное 2-анилино-5-тиазолинона и тиогидантоин	6 б.
5.	3 б. за правильное дансилирование аминогруппы и 1 б. за дансилирование	
	гидроксигруппы тирозина	4 б.
		Всего25 б.

Задача 2 (авторы Ильин М.А., Конев В.Н.)

1. При взаимодействии анилина с уксусным ангидридом образуется амид **A** (ацетанилид), дальнейшее сульфохлорирование ароматической системы которого проводят с помощью хлорсульфоновой кислоты (HSO₃Cl). Группа CH₃CONH является *орто-пара*-ориентантом, однако вследствие объемных затруднений образования *орто-* изомера, получается лишь *пара*-сульфохлорпроизводное **Б** (ацетилсульфанилхлорид). Кипячение **Б** с раствором аммиака приводит к образованию ацетилсульфаниламида (соединение **B**), который после гидролиза превращается в сульфаниламид (амид сульфаниловой кислоты, вещество **I**). При взаимодействии амина (в данном случае – амида сульфаминовой кислоты) с азотистой кислотой (NaNO₂ + HCl) происходит реакция диазотирования и образуется соль диазония. Полученная соль диазония является диазосоставляющей, а фенилендиамин – азосоставляющей в последующей реакции азосочетания, в результате чего образуется соединение **I I**.

- 2. Соединение **I** сейчас нам более известно под названием "стрептоцид" (а точнее "белый стрептоцид"), соединение **I I**, вследствие своей красной окраски, получил название "красный стрептоцид".
- 3. Стрептоцид сульфаниламидных является родоначальником класса антибиотиков. Механизм действия сульфаниламидных препаратов связан ингибированием процессов синтеза дигидрофолиевой кислоты – важного фактора роста микроорганизмов. В этих процессах патогенные для человека бактерии используют в качестве строительного блока природный метаболит – пара-аминобензойную кислоту. Пользуясь структурным сходством с пара-аминобензойной кислотой, сульфаниламиды конкурентно включаются в процесс синтеза ложной дигидрофолиевой кислоты, которая оказывается неспособной выполнять свои жизненные функции и губительна для микроорганизмов.
- 4. На первой стадии в приведенной схеме стирол взаимодействует с хлором (в присутствии метанола) логично предположить, что при этом протекает реакция электрофильного присоединения хлора по двойной связи винильной группы. Однако, обратим внимание, что продукт \mathcal{I} содержит 9 атомов углерода (молекулярная формула $C_9H_{10}CINO_3$), а исходный стирол (C_8H_8) лишь 8. Поскольку на второй стадии описанной схемы в качестве реагентов используется нитрующая смесь смесь концентрированных азотной и серной кислот, и "лишнему" атому углерода взяться неоткуда (нет реагентов, содержащих углерод), следовательно, на первой стадии метанол участвует не только в качестве растворителя. Вторая стадия реакция нитрования в ароматическое кольцо приводит к образованию нитропроизводного \mathcal{I} ($C_9H_{10}CIO(NO_2)$). Таким образом, учитывая, что при нитровании отщепляется атом водорода, на первой стадии помимо хлора произошло присоединение по двойной связи группы —ОСН₃. "Боковой"

заместитель в ароматическом кольце соединения Γ в реакциях электрофильного замещения является *орто-пара*-ориентантом, однако вследствие стерических затруднений основным продуктом будет *пара*-изомер. При взаимодействии спиртового раствора щелочи с галогенпроизводным Π в результате протекания реакции элиминирования HCl, образуется метоксипроизводное нитростирола (соединение Π). Гидролиз этого метоксипроизводного в кислой среде приводит к образованию Π -нитроацетофенона.

Последующее взаимодействие n-нитроацетофенона с бромом протекает без использования катализаторов (например, кислот Льюиса), следовательно, можно предположить, что бромирование протекает не в ароматическое кольцо, а по метильной группе в ацетильном фрагменте. Учитывая, что в реакцию вступает 1 эквивалент брома (на 1 моль n-нитроацетофенона требуется 1 моль брома), т.е. в молекуле n-нитроацетофенона один атом водорода заместился на один атом брома, молекулярная формула продукта $\mathbf{\mathcal{K}} - C_8H_6NO_3Br$. Тогда, сравнивая молекулярные формулы соединений $\mathbf{\mathcal{K}}$ и 3 ($C_8H_6NO_3Br$ и $C_8H_8N_2O_3$), можно заключить, что атом брома в молекуле $\mathbf{\mathcal{K}}$ поменялся на аминогруппу (NH_2) в 3. Обработка амина 3 уксусным ангидридом приводит к образованию амида ($C_{10}H_{10}N_2O_4$), который в результате конденсации с формальдегидом превращается в спирт $\mathbf{\mathcal{U}}$ ($C_{11}H_{12}N_2O_5$).

Молекулярные формулы соединений **И** и **К** отличаются только на два атома водорода. Следовательно, превращение $\mathbf{U} \to \mathbf{K}$ — реакция восстановления, причем, принимая во внимание, что восстановление проводилось в относительно мягких условиях, а нитрогруппа остается в неизменном виде в конечном продукте **III**, можно заключить, что восстановилась кетогруппа. Кислотный гидролиз **K** с последующей

обработкой полученных продуктов раствором NaHCO₃ приводит к образованию аминоспирта, а после взаимодействия с дихлорметилацетатом – к соединению **III**.

5. При хлорировании n-нитротолуола в присутствии кислоты Льюиса (FeCl₃) в результате согласованной ориентации в аромаческом кольце (нитрогруппа является метиа-ориентантом, метильная группа – орто-пара-ориентантом) образуется 2-хлор-4нитротолуол (соединение Л). Далее восстанавливают нитропроизводное Л и (после обработки раствором NaHCO₃) получают амин **M**. Полученный амин превращают в соль диазония (при взаимодействии с NaNO₂ и HCl при пониженной температуре), которую затем обрабатывают суспензией хлорида меди (I) в соляной кислоте. В результате этой реакции (реакции Зандмейера) диазогруппа замещается на атом хлора и образуется дихлортолуол, котором затем окисляют группу получают метильную И дихлорбензойную кислоту Н.

Далее полученную дихлорбензойную кислоту нитруют и восстанавливают полученное нитропроизводное до аминодихлорбензойной кислоты **О** (после обработки NaHCO₃). Последующая стадия описанной схемы представляет собой видоизменение реакции Шимана — замены диазогруппы на фтор: образовавшуюся аминодихлорбензойную кислоту **О** превращают в соль диазония, которую затем осаждают в виде малорастворимого гексафторфосфата и подвергают термическому разложению. В результате образуется дихлорфторбензойная кислота **П**, которую затем с помощью тионилхлорида превращают в соответствующий хлорангидрид **Р**.

Хлорангидрид \mathbf{P} далее в присутствии основания (триэтиламина) конденсируют с диметиламиноакрилатом, который является \mathbf{CH} -кислотой, в результате чего образуется аминовинилкетон \mathbf{C} . Обратим внимание, что в молекуле ципролета содержится аминоциклопропильный остаток. Вероятно, этот остаток был введен на стадии образования \mathbf{T} в результате замены диметиламинного фрагмента в соединении \mathbf{C} .

В присутствии гидрида натрия происходит внутримолекулярная циклизация циклопропиламиновинильного производного \mathbf{T} , после кислотного гидролиза образующегося при этом эфира получается кислота \mathbf{Y} , которая при взаимодействии с пиперазином превращается в соединение \mathbf{IV} .

$$F$$
 СООС $_2$ Н $_5$ $_1$) NaH $_2$ НСІ, 90° С СІ $_2$ НСІ $_3$ СООН $_4$ Н $_5$ СООН $_4$ Н $_5$ СООН $_4$ Н $_5$ СООН $_4$ СООН $_4$ СООН $_5$ СООН $_6$ С

Система оценивания

1.	Структурные формулы A-B , I и I I – 1 б. × 5	5 б.
<i>2</i> .	Тривиальные названия I и I I – 1 б. × 2	2 б.
<i>3</i> .	\hat{K} ласс антибиотиков – 1 балл; механизм антибактериальной активности – 1 б	2 б.
4.	Структурные формулы Γ - K – 1 б. $ imes$ 7	7 б.
5.	Структурные формулы $\mathbf{J-Y}-1$ б. $\times 9$	9 б.