Задача 12. Радиоуглеродный метод определения возраста

 14 С — β -радиоактивный изотоп с периодом полураспада $t_{1/2} = 5700$ лет. Он постоянно образуется в атмосфере в результате ядерных реакций между атомами азота и нейтронами под действием космических лучей.

Предположим, что скорость образования этого изотопа не меняется в течение тысяч лет и равна скорости распада, так что количество 14 С в атмосфере остается постоянным. В результате изотоп 14 С наряду с 12 С и 13 С участвует во всех химических реакциях углерода. Он образует CO_2 с кислородом и в результате фотосинтеза попадает в живые организмы, где изотопное отношение 14 С / 12 С постоянно.

Это свойство используют для определения возраста биологических образцов, полученных из мертвых организмов. В этих образцах отношение 14 C / 12 C уже не постоянно, а уменьшается с течением времени из-за распада 14 C.

Удельная радиоактивность 14 С в живых организмах равна 0.277 Бк на грамм углерода (1 Бк соответствует одному распаду в секунду).

- **12-1.** Рассчитайте возраст образца, в котором отношение 14 C / 12 C равно 0.25 от величины, соответствующей живому организму.
- **12-2.** Что происходит с атомом ¹⁴С при его распаде?
- **12-3.** Что происходит с органической молекулой (например, ДНК, белок и др.), содержащей атом ¹⁴С, при распаде этого атома?
- **12-4.** Рассчитайте радиоактивность живого организма массой 75 кг, обусловленную распадом 14 С, и число атомов 14 С в организме, если массовая доля углерода равна 18.5%.