Пример оформления задачи

Диоксимы — 1,2-дикарбонильные соединения

широко применяющиеся для определения никеля различными методами.

Бензилдиоксим (БДО, R_1 = R_2 = C_6H_5) существует в трех изомерных формах — α , β и γ . С ионом Ni^{2+} α -БДО образует устойчивый комплекс состава 1:2, γ -БДО — малоустойчивый комплекс 1:1, а β -БДО с Ni^{2+} не взаимодействует.

Для диметилглиоксима (ДМГ, R_1 = R_2 = CH_3) известна только α -форма. Предполагается, что β - и γ -ДМГ в растворах быстро перегруппировываются в α -ДМГ.

Комплекс Ni^{2+} с ДМГ весьма устойчив, практически нерастворим в воде и экстрагируется хлороформом. Комплекс Fe^{2+} (и большинства других ионов переходных металлов) с ДМГ растворим в воде, а хлороформом экстрагируется только в присутствии пиридина или высших спиртов. На подобном различии свойств комплексов основано множество методов отделения и гравиметрического определения никеля с ДМГ.

- 1. Изобразите структурные формулы α-, β- и γ-БДО (по 1 баллу каждая формула).
- 2. Предложите механизм возможной перегруппировки β- и γ-ДМГ в α-ДМГ (1 балл).
- 3. Изобразите структурные формулы комплексов ДМГ с Ni^{2+} и Fe^{2+} (по 1.5 балла).
- 4. При экстракции иона Ni^{2+} из 100 мл его водного раствора 10 мл хлороформного раствора ДМГ в органическую фазу перешло 95% общего количества никеля. Чему равен коэффициент распределения никеля в этих условиях? (1.5 балла расчет + 0.5 балла численный ответ)
- 5. Рассчитайте минимальное значение pH, при котором возможна экстракция 99% Ni^{2+} из водного раствора равным объемом 0.1 М раствора ДМГ в хлороформе. Общая константа устойчивости комплекса Ni^{2+} с ДМГ равна $\beta_2 = 2.5 \cdot 10^{17}$. Константы кислотности ДМГ составляют $K_{a1} = 2.9 \cdot 10^{-11}$, $K_{a2} = 9.0 \cdot 10^{-13}$. Константы распределения ДМГ и комплекса никеля в системе $CHCl_3-H_2O$ равны, соответственно, $K_{D,R} = 0.11$ и $K_D = 2.0 \cdot 10^2$ (5.5 балла расчет + 0.5 балла численный ответ).