УДК 661.491

Прямой синтез пероксида водорода в микрореакторах

Э. Колемайнен, И. Турунен

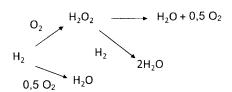
ЭРО КОЛЕМАЙНЕН (Е. KOLEHMAINEN) — доктор технологии, ассоциированный профессор кафедры химической технологии Технологического университета г. Лаппенранта (Финляндия). Область научных интересов: технология микропроцессов, интенсификация процессов, методология разработки и совершенствования процессов.

ИЛКА ТУРУПЕП (ILKKA TURUNEN) — доктор технологии, профессор кафедры химической технологии Технологического университета г. Лаппенранта (Финляндия). Область научных интересов: интенсификация процессов, технология микропроцессов, методология разработки и совершенствования процессов, моделирование многофазных процессов.

Технологический университет г. Лаппенранта, кафедра химической технологии, PO Box 30, FI-53851 Лаппенранта, Финляндия.

Lappeenranta University of Technology, Department of Chemical Technology, P.O. Box 30, FI-53851 Lappeenranta, Finland.

Введение


Современное производство пероксида водорода осуществляется в основном по антрахинонному процессу. Этот процесс относительно безопасен, но он довольно сложен и требует больших производственных мощностей для обеспечения экономической целесообразности [1].

Альтернативный метод производства пероксида водорода — прямой синтез из водорода и кислорода [2]. Метод особенно удобен для получения пероксида водорода на месте его потребления в небольшом количестве. Основная проблема реализации этого метода связана с обеспечением технологической безопасности. Смесь водорода и кислорода очень взрывчата [взрывоопасные концентрации для H_2 в O_2 5—94%(об.), для H_2 в воздухе 5—75%(об.)] [1]. Обычно технология прямого синтеза проектируется так, чтобы операции проводились не во взрывооопасном режиме — при низких концентрациях водорода, но при высоком рабочем давлении для создания достаточной концентрации водорода и кислорода в растворе. Эти условия ставят сложные задачи, касающиеся изготовления оборудования. Микрореакторная технология является альтернативой, призванной преодолеть эти трудности. При использовании микрореакторов можно ожидать существенного повышения безопасности процесса.

В настоящем обзоре технологии прямого синтеза пероксида водорода в микрореакторах рассматриваются с различных точек зрения: реакторные технологии, катализаторы, производительность процесса.

Технологические аспекты прямого синтеза пероксида водорода

В процессе прямого синтеза протекают реакции окисления, восстановления и разложения [3]:

Полного окисления водорода следует избегать, как и восстановления пероксида водорода, чтобы предотвратить образование воды.

Микрореакторы

Ввиду малых размеров реакционных каналов для микрореакторов характерно большое отношение площади поверхности к внутреннему объему. Это улучшает условия тепло- и массопередачи. Малые внутренние объемы и эффективный тепло- и массообмен обеспечивают безопасность микрореакторной технологии.

Простейшая структура микрореактора — одноканальный капилляр. Это закрытая система, основной недостаток ее связан с ограничением возможностей фиксации в ней катализатора. Капиллярные реакторы были использованы в работах [3—6]. В исследовании [5] реактором служили стеклянные капилляры (диаметр 0,53, 1 и 2 мм, общая длина 34,5 см), в [4] — кремние вый капилляр (внутренний диаметр 1 мм, длина 1—6 м).

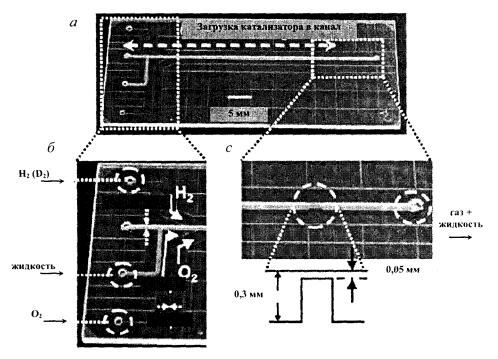


Рис. 1. Конструкция одноканального микрореактора для прямого синтеза пероксида водорода:

a — общий вид; δ — увеличено входное сечение; s — увеличена структура загрузки порошкового катализатора в канал [9]

В работах [3, 7] проводили синтез в капилляре из нержавеющей стали (внутренний диаметр 0,765 мм, длина 4—6 см).

Кроме стандартных капилляров для проведения синтеза пероксида водорода использовали микрореакторы более сложной конструкции. Например, микрореакторы собирают из пластин с микроканалами, полученными механической обработкой. Применялись как одноканальные, так и многоканальные устройства. Изготовление каналов в субмиллиметровом диапазоне требует прецизионной обработки. Для варианта параллельного расположения каналов их размеры должны быть точно одинаковыми, чтобы в них достигалось равномерное распределение многофазных потоков [8].

В [8, 9] был изготовлен одноканальный реактор из стеклянных пластин (рис. 1). Ширина реакционного канала 0,6 мм при глубине 0,3 или 0,9 мм. Каналы готовили путем изотропного химического травления и механической обработки. Каналы для проведения реакции и входные структуры для загрузки катализатора соединялись термически.

Вонг и др. [10] изготовили одноканальный реактор методом горячего тиснения. Форму для канала создавали на латунной матрице, затем матрицу вдавливали в полиметилметакрилатную пластину при регулируемой нагрузке при 140 °C. Эту полиметилметакрилатную пластину накрывали другой, такой же пластиной и обе

пластины скрепляли путем нагревания. Размеры канала: ширина 1 мм, глубина 0,4 мм, длина 45 мм.

В работе [4] был разработан пакетный микрореактор из полиметилметакрилатных и кремниевых листов. Канал требуемой формы вырезали из листа полиметилметакрилата, который затем покрывали листом кремния. Таким образом чередовали листы кремния и полиметилметакрилата.

Микрореактор (пакет пластин) имел прямоугольные каналы длиной 1,36 м, ширина канала 1 мм, глубина 0,1 мм.

Многоканальный микрореактор, использованный в работе [11], включает 10 параллельных реакционных каналов, каждый шириной 0,625 мм, глубиной 0,350 мм, длиной 20 мм. Устройство состоит из трех пластин: верхняя пластина из стекла пирекс (толщина 0,5 мм),

средняя — кремниевая пластина (толщина 0,5 мм) и нижняя пластина также из кремния (толщина 1 мм). Входы и выход расположены в нижней пластине, реакционные каналы — на средней пластине. Для изготовления блока применяли несколько разных технологий, включая метод фотолитографии, травления и скрепления.

Разработано многоканальное устройство, имеющее восемь параллельных каналов (рис. 2) [10]. Каналы размером 15 мм (длина), 1 мм (ширина) и 0,3 мм (глу-

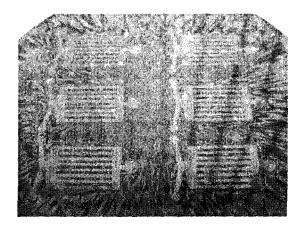


Рис. 2. Многоканальный реактор для синтеза пероксида водорода [10].

Каналы выгравированы на кремниевой пластине

бина) выгравированы на поверхности кремниевой пластины. Есть сообщение [12] о многоканальном многослойном микрореакторе с примерно 450 каналами. Сечение канала — квадрат со стороной 0,8 мм. Запатентована реакторная система, включающая узлы для питания, для проведения реакции и выхода продукта [13]. Представлено несколько вариантов для организации потоков. Реакционный блок содержит катализатор, фиксированный на стенках реакционных каналов. Кроме того, для закрепления катализатора можно использовать пористый носитель. В работе [14] описан смесительразбрызгиватель для смешивания водорода и кислорода и последующего смешивания газовой смеси с жидкостью. Смеситель-разбрызгиватель состоит из пакета пластин с тонкими каналами, которые создают поток мелких пузырьков газа через жидкость.

В установке [4] водород и кислород генерировали электрохимически в электролизере до введения их в реактор. В работе [15] также использовали электрохимический реактор для производства партий пероксида водорода. Электроды и реакционные каналы готовили путем механической обработки на кремниевой полоске. Реактор сначала заполняли водой и электролитом, генерированные кислород на аноде и водород на катоде диффундировали к реакционным каналам, содержащим катализатор.

Организация потоков и гидродинамика

Вид течения играет важную роль в многофазных реакторах, поскольку влияет на перемешивание, массои теплообмен. В микроканалах часто реализуется снарядный режим течения (slug flow) газожидкостного потока [4, 5]. Во многих случаях этот поток не является нормальным потоком Тейлора, поскольку капилляр (микрореактор) заполнен мелкими частицами катализатора. Однако можно наблюдать разделенные напорные потоки газа и жидкости [3]. В устройстве, использованном в работе [8], создавался поток, подчиняющийся закономерностям капельного потока.

В работе [7] изучали кинетику реакции образования пероксида водорода из H_2 и O_2 в потоке газ—жидкость. Исследовано влияние общего расхода на объемные коэффициенты массопередачи в системе газ—жидкость, отмечена возможность достижения очень высоких значений объемных коэффициентов массопередачи (рис. 3).

Вонг с сотр. [10] и Hr с сотр. [5] оценили эффективность массопереноса газ—жидкость в микрореакторе, использовав корреляцию Берчича и Пинтара [16]. Был сделан вывод, что уменьшение длины потока жидкости и газа приводит к повышению производительности процесса по пероксиду водорода, что указывает на улучшение массообмена в этих условиях.

Во многих исследованиях синтез пероксида водорода проводили при наличии в реакционных каналах частиц катализатора, а также стеклянных бусин или других частиц, способствующих безопасности процесса, кото-

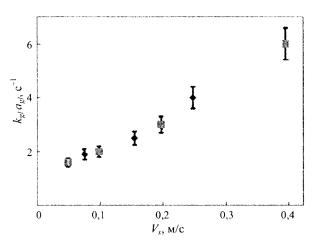


Рис. 3. Влияние суммарно приведенной скорости газожидкостного потока $(H_2+O_2,\ H_2O_2)$ на объемные коэффициенты массопереноса газ—жидкость в капиллярных микрореакторах [7].

рые неизбежно влияют на картину потока. Разбивка потока на малые короткие фракции в канале может подавить взрывы [7]. Утверждается, что благодаря этому в микрореакторах можно вести процесс в условиях взрывоопасного режима. Взрыв в микромасштабной системе вероятен при более высокой температуре и высоком давлении, чем в макромасштабных процессах [17, 18]. Тем не менее в [8, 11] наблюдали взрывы, которые происходили при отсутствии воды. Для устранения взрывов в каналы вводили инертные частицы кремнезема, что создавало ничтожно малые пространства. Присутствие воды также снижает риск взрыва.

Рабочие условия процесса

Условия эксплуатации реактора синтеза пероксида водорода ограничены требованиями безопасности. Обычно операции выполняются в взрывобезопасном режиме. Для растворения достаточного количества водорода в жидкости, чтобы обеспечить необходимую производительность процесса, требуется высокое давление (см. таблицу). В качестве растворителя в большинстве случаев используется вода, хотя в метаноле, этаноле и пропаноле растворимость водорода и кислорода значительно выше, чем в воде [10]. Однако в случае применения спиртов в качестве растворителя требуется дополнительный процесс для их отделения от пероксида водорода и воды.

Многие исследовательские группы использовали кислоты и бромиды в качестве промоторов. Показано, что ионы Br^- , Cl^- и H^+ подавляют прямое образование воды и восстановление пероксида водорода, тем самым повышая выход целевого продукта [3].

Катализаторы

Прямой синтез пероксида водорода — каталитический процесс. Наиболее часто применяется палладиевый

у словия процесса прямого синтеза пероксида водорода				
e,	Типичное время реакции, с	Растворитель	Промотор	
	93	Вода	HCl	

Температура, Давление Литература °C МΠа 5---20 [4] 20 - 300,1 HCl, KBr [10] Вода, метанол, этанол, изопропанол 0.3 - - 2.230---50 0.8 - 1.1H₂SO₄, NaBr Вода [3], [7] 20 1 - 2.523 Вода H₂SO₄, H₃PO₄, NaBr [8], [11] 20 0,1 Метанол, вода HCl, KBr [5] NaBr [12] Вода 50 3 [19]

катализатор [3-5, 7-9, 11]. Вонг и др. [10] использовали платину и Pd-Pt. Биметаллический катализатор Pd-Pt был испытан также в работе [11]. Образованию пероксида водорода возможно способствует золото [20], однако оно не было еще использовано в микрореакторах.

Важную роль для селективности реакции играет материал подложки для катализатора. Испытаны различные материалы подложек и методы фиксации катализатора. Для внесения катализатора и подложки в микрореактор требуется специальная методика из-за малых размеров каналов.

Волошин и др. [3, 7] в качестве подложки для катализатора использовали SiO2. Катализатор, содержащий 2%(масс.) Pd на SiO₂, готовили золь-гель методом. Палладий получали из PdCl₂. При подготовке геля использовали тетраэтоксисилан, этанол и воду. После прокаливания катализатор измельчали и просеивали, отбирая частицы размером 75-150 мкм. Удельная поверхность катализатора составляла 603 м²/г. Частицы катализатора упаковывали в капилляр микрореактора, в конце капилляра устанавливали фильтр для задержки частиц из реактора в случае их уноса с реакционным потоком.

Иноуэ и др. [11] также использовали подложку из SiO₂ для биметаллического катализатора Pt-Pd. В соляной кислоте растворяли PdCl₂ и PtCl₄, в раствор вносили силикатель, затем суспензию фильтровали, сушили и прокаливали. Катализатор просеивали для отделения частиц размером 50-70 мкм. Мелкие частицы катализатора суспендировали в деионизированной воде и заполняли ими каналы реактора. В этой работе также применяли фильтр для сохранения частиц катализатора в реакционных каналах. После заполнения каналов катализатором реактор сушили в печи для формирования в каналах плотного каталитического слоя. Аналогичная методика была использована для введения коммерческих катализаторов Pd/C и Pd/Al₂O₃ в реакционные каналы [8, 11].

Есть пример использования коммерческого катализатора Pd (5%масс.)/С [4]. Внутреннюю поверхность реакционного капилляра покрывали катализатором путем прокачки через капилляр суспензии Pd/C. При этом катализатор прочно фиксируется на поверхности капилляра. Таким способом наносили 94 мг катализатора на 1 м кремниевого капилляра, что соответствует 30 г катализатора на 1 м². В случае пакетного микрореактора была достигнута загрузка катализатора в 84 мг.

В качестве подложки катализатора использовали цеолит [10]. Водный раствор PdCl₂ смецивали с водным аммиаком и полученным раствором [Pd(NH₃)₄]Cl₂ обрабатывали цеолит, например H-ZMS-5. Затем испаряли воду и прокаливали цеолит. Та же группа исследователей использовала Рd-силикалитный катализатор. Для его подготовки [Pd(NH₃)₄]Cl₂ смешивали с гелем силикалита, затем материал катализатора подвергали кристаллизации в автоклаве. Порошок катализатора суспендировали и осаждали в реакционном канале до образования слоя толщиной 100 мкм на поверхности. Использовали и другой метод для введения катализатора в реактор [10]. На внутренних поверхностях многоканального кремниевого реактора создавали слой цеолита путем осаждения из раствора, затем цеолитовую подложку пропитывали раствором, содержащим Pd и Pt.

Нг и др. [5] катализатор закрепляли в реакторе с помощью полимерного связующего. Полистирол, тетракис(трифенилфосфино)палладий, тетрагидрофуран и циклогексан смешивали, при этом образуются мицеллы полимера. Этой смесью заполняли узкие стеклянные реакционные трубки. Полимерные мицеллы осаждались на поверхности стекла, и после испарения растворителя на поверхности трубок оставалась тонкая равномерная пленка. Затем пленку промывали гексаном, сушили и подогревали, при этом тетракис(трифенилфосфино)палладий разлагался с образованием слоя наночастиц палладия на поверхности стекла.

Факторы, влияющие на конверсию и выход продукта в прямом синтезе пероксида водорода

Каталитическая система

По имеющимся сообщениям в качестве катализаторов для прямого микрореакторного синтеза пероксида водорода использовали только Pd и Pd-Pt. В серии исследований изучали влияние материала подложки и количества загруженного катализатора на конверсию и выход целевого продукта.

Эксперименты [10] с использованием катализаторов Рd и Pd-Pt при общем содержании этих металлов на подложке из силикалита 2,0%(масс.) показали, что при увеличении содержания Pt от 0 до 0,3%(масс.) и соответственно уменьшении содержания Pd с 2 до 1,7%(масс.) концентрация пероксида водорода, конверсия по водороду и селективность возрастают и достигают максимального значения. Так, в случае 1,7% Pd и 0,3% Pt на силикалитной подложке были получены следующие результаты: селективность 70%, конверсия 5,4%, концентрация пероксида водорода 0,3 моль/л. Дальнейшее увеличение содержания Pt и соответственно уменьшение содержания Pd приводит к снижению производительности процесса.

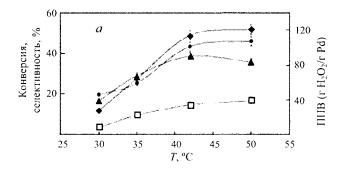
Иноуэ и др. [11] также испытывали Pd-Pt и Pd, но реальный эффект нельзя было оценить, поскольку использовались различные подложки для катализаторов: для биметаллического катализатора — подложка из кремнезема, для Pd — подложка из Al_2O_3 и C. Установлено только, что селективность катализатора Pt-Pd явно ниже, чем катализатора Pd/C.

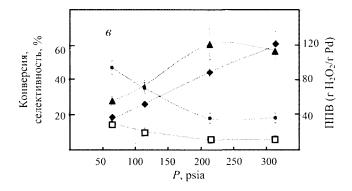
Нг и др. [5] при изучении влияния загрузки катализатора на реакцию синтеза пероксида водорода использовали палладисвый катализатор с содержанием Pd 1, 2 и 4%(масс.). Отмечено повышение выхода пероксида водорода при увеличении загрузки катализатора, причем была достигнута концентрация пероксида водорода 0,29 моль/л. При анализе зависимости мольного количества пероксида водорода от времени реакции и содержания Pd в катализаторе найдено, что 2%(масс.) Pd обеспечивает высшую производительность реакции. Незначительные потери активности катализатора с увеличением концентрации от 2 до 4%(масс.) могут быть вызваны небольшим возрастанием размера частиц палладия.

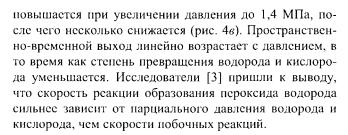
По данным работы [10] при увеличении содержания Рd на цеолите от 0,3 до 5%(масс.) конверсия возрастает, но снижается селективность. Наибольшая концентрация пероксида водорода была достигнута при загрузке катализатора 1,2%(масс.). Увеличение содержания Pd приводит к снижению дисперсности металла, что негативно влияет на синтез пероксида водорода. В этой же работе изучали влияние на результативность синтеза пероксида водорода материала подложки для катализатора (во всех случаях использовали 2%масс. Pd). Установлено, что подложка из силикалита повышает конверсию (5%), селективность по водороду (43%) и концентрацию пероксида водорода (0,20 моль/л) в большей степени, чем цеолиты.

В работах [8, 11] испытывали С и Al_2O_3 в качестве материала подложки для палладиевого катализатора. Ранее исследователи обнаружили, что подложка из углерода повышает селективность и выход продукта более значительно, чем Al_2O_3 . При этом отмечались различия в смачивании подложки. В случае С-подложки пустоты

между частицами углерода почти полностью заполняются жидкостью, а пустоты между частичками Al_2O_3 -подложки частично остаются сухими. Это может влиять на активность катализатора. Впоследствии исследователи пришли к выводу, что при использовании Al_2O_3 в качестве подложки для Pd-катализатора достигается более высокая производительность по пероксиду водорода, чем в случае С-подложки: максимальный выход и массовая доля продукта 9.9% и 3.2%(масс.), соответственно. Здесь надо принять во внимание, что в последнем исследовании катализатор Pd/Al_2O_3 не был идентичен с использовавшимся ранее: различались процессы восстановления катализатора при его подготовке. В более раннем исследовании восстановление проводилось в газовой фазе, в последнем — в жидкой фазе.


Растворители и промоторы


Для достижения высокой производительности реакции прямого синтеза пероксида водорода важное значение имеет выбор растворителя, а также использование промоторов, которые повышают выход целевого продукта, предотвращая нежелательные побочные реакции. В качестве растворителя в основном используется вода, хотя в среде метанола, этанола и изопропанола производительность реакции выше благодаря лучшей растворимости в них водорода и кислорода.


Эффективность растворителей и промоторов в синтезе перексида водорода исследовали Вонг [10] и Нг [5]. При использовании метанола, подкисленного соляной кислотой до содержания 0,1 моль/л, достигается более высокая концентрация пероксида водорода, чем в среде этанола и изопропанола [10]. Выход пероксида водорода возрастает при введении в систему ионов Br и Cl [5]. Ионы водорода кислот и галогенид-ионы подавляют реакции образования воды, гидрирования и разложения. Наиболее высокая концентрация пероксида водорода, 0,33 моль/л, была достигнута в системе, содержащей метанол, соляную кислоту и бромид калия (конверсия и селективность определены не были). В случае системы из метанола, серной кислоты и бромида калия были получены следующие результаты: концентрация пероксида 0,28 моль/л, конверсия по водороду 3,9% и селективность 77%. При использовании чистого метанола концентрация пероксида водорода составила только 0,03 моль/л, что соответствует очень низкой селективности, всего 0,65%.

Температура и давление

При изучении влияния температуры и давления в работе [4] было показано, что концентрация пероксида водорода уменьшается с 8 до 6 ммоль/л при повышении температуры от 5 до 20 °С. По результатам исследования Волошина с сотр. [3] при повышении температуры от 30 до 40 °С селективность вначале улучшается, а при температуре выше 40 °С начинает немного снижаться, что указывает на повышенное образование побочных продуктов (рис. 4a, δ). Что касается влияния давления, то, как показано в этом исследовании, специфичность

Соотношение расходов газов

Процесс получения пероксида водорода включает реакции окисления и восстановления, как показано на рис. 1. Основная реакция - окисление водорода. Тем не менее полного окисления водорода следует избегать. Кроме того, восстановление пероксида водорода также нежелательная побочная реакция. Поэтому соотношение содержаний кислорода/водорода в реакционной системе является важным фактором протекания реакции. Вонг с сотр. [10] и Нг с сотр. [5] пришли к выводу, что избыток водорода способствует восстановлению пероксида водорода и уменьшению его концентрации. Согласно результатам [5], избыток кислорода $(O_2: H_2 = 2:1)$ позволяет получить высокую концентрацию пероксида водорода, 0,25 моль/л. Высокие показатели селективности (85%) и выхода целевого продукта (77%) были достигнуты при соотношении $O_2:H_2 = 3:1$ [19]. По сообщению [10] лучшие результаты получаются при стехнометрическом соотношении водорода и кислорода.

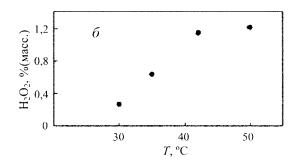


Рис. 4. Влияние температуры и общего давления на эффективность реакции образования пероксида водорода:

a, s — конверсия водорода и кислорода, селективность по пероксиду водорода и пространственно-временной выход реакции (ПВВ); δ — выходная концентрация пероксида водорода.

Условия реакции: 9,1% H_2 в воздухе, общее давление 2,2 МПа, (a, b), температура 42 °C (b), расход газа 22 м³/мин, скорость потока жидкости 0,05 мл/мин, количество катализатора 15 мг [2%(масс.) Pd/SiO₂].

50 psia = 0,34 MΠa, 100 psia = 0,69 MΠa, 150 psia = 1,03 MΠa, 200 psia = 1,38 ΜΠa, 250 psia = 1,72 ΜΠa, 300 psia = 2,07 ΜΠa, 350 psia = 2,41 ΜΠa.

■ — конверсия $H_2; \ \square$ — конверсия $O_2; \ \blacktriangle$ — селективность

Заключение

Микрореакторная технология дает существенные преимущества в производстве пероксида водорода прямым синтезом из кислорода и водорода. Прежде всего это безопасность производства. Узкие реакционные каналы и малый внутренний объем микрореакторов обеспечивают безопасную эксплуатацию этого оборудования. Проведение прямого синтеза пероксида водорода в микрореакторе эффективно и с экономической точки эрения — нет необходимости концентрировать раствор пероксида водорода, поскольку разбавленный пероксид может быть использован непосредственно для различных целей.

Прямой синтез пероксида водорода в микрореакторах успешно осуществляется в лабораторных условиях. Сообщается о достижении высокой конверсии (90%), выходе (77%) и селективности реакции (100%) и массовой доле пероксида водорода (5%). До настоящего времени в качестве катализаторов в микрореакторах использовали только Pd и Pt. Можно ожидать, что применение золота в качестве катализатора повысит производительность реакции. Активно продолжаются опытноконструкторские работы как в области реакторных технологий, так и в области катализа. Есть основания полагать, что прямой синтез в микрореакторах — весьма перспективная технология для производства пероксида водорода в будущем.

ЛИТЕРАТУРА

- Ullmann's Encyclopedia of Industrial Chemistry. Eds. B. Elvers, S. Hawkins, M. Ravenscroft, G. Schulz. V. A13: Hydrogen peroxide. Weinheim: VCH, 1989, p. 297—466.
- 2. US Patent No 1108752, 1914.
- Voloshin Y., Halder R., Lawal A. Catal. Today, 2007, v. 125, p. 40 - 47.
- 4. *Machara S., Taneda M., Kusakahe K.* Chem. Eng. Res. and Design, 2008, v. 86, p. 410 415.
- Ng J.F., Nie Y., Chuah G.K., Jaenicke S. J. Catal., 2010, v. 269, p. 302 308.
- 6. US Patent application 20060233695, 2006.
- Voloshin Y., Lawal A. Chem. Eng. Sci., 2010, v. 65, p. 1028— 1036.
- 8. Inoue T., Kikutani Y., Hamakawa S., Mawatari K., Mizukami F., Kitamori T. Chem. Eng. J., 2010, v. 160, p. 909---914.
- 9. Inoue T., Ohtaki K., Kikutani Y., Sato K., Nishioka M., Hamakawa S., Mawatari K., Mizukami F., Kitamori T. Chem. Lett., 2009, v. 38, № 8, p. 820 821.
- 10. Wang X., Nie Y., Lee L.C., Jaenicke S. Appl. Catal. A: General, 2007, v. 317, p. 258—265.

- Inoue T., Schmidt M.A., Jensen K. Ind. Eng. Chem. Res., 2007, v. 46, p. 1153—1160.
- Dada E., Sethi D., Deng D. Proc. of AIChE 2008, Top. 5, IMRET 10. 10-th Int. Conf. on Microreaction Technology, New Orleans, USA, 2008.
- 13. US Patent № 7029647 B2, 2006.
- 14. PCT WO2008/085522 A1, 2008.
- 15. PCT WO2005/033379, 2005.
- 16. Bercic G., Pintar A. Chem. Eng. Sci., 1997, v. 52, p. 3709 3719.
- 17. Veser G. Ibid., 2001, v. 56, p. 1265—1273.
- 18. Janicke M.T., Kestenbaum H., Hagendorf U., Schüth F., Fichtner M., Schubert K. J. Catal., 2000, v. 191, p. 282 293.
- 19. Hessel V., Löwe H., Müller A., Kolb G. Chemical Micro Process Engineering-Processing and Plants. Viley-VCH Verlag GmbH, Weinheim, 2005, p. 571—572.
- Gudarzi D., Simakova O.A, Hernández Carucci J.R., Biasi P.D., Eränen K., Kolehmainen E., Turunen I., Murzin D.Y., Salmi T. Chem. Eng. Trans., 2010, v. 21, p. 925—930.