УДК 541.38+546.9+547-386

Структурные особенности и электрохимические характеристики комплексов переходных металлов (Pt, Pd, Ni, Co) с «небезучастными» лигандами*

Н. Т. Берберова, И. В. Смолянинов, А. О. Охлобыстин, Н.Н. Летичевская, Е. В. Шинкарь

НАДЕЖДА ТИТОВНА БЕРБЕРОВА — доктор химических наук, профессор, заведующая кафедрой органической химии Астраханского государственного технического университета (АГТУ), проректор по научной работе АГТУ. Область научных интересов: одноэлектронный перенос, органическая электрохимия, механизм органических и биохимических реакций, активация малых молекул, металлокомплексные соединения.

ИВАН ВЛАДИМИРОВИЧ СМОЛЯНИНОВ— аспирант кафедры органической химии АГТУ. Область научных интересов: одноэлектронный перенос, механизм реакций, активация малых молекул, электрохимия металло-комплексных соединений. E-mail thiophen@mail.ru

АНДРЕЙ ОЛЕГОВИЧ ОХЛОБЫСТИН — аспирант кафедры органической химии АГТУ. Область научных интересов: одноэлектронный перенос, механизм реакций, активация сероводорода, синтез металлокомплексных соединений. E-mail ion-radical@mail.ru

НАТАЛЬЯ НИКОЛАЕВНА ЛЕТИЧЕВСКАЯ— кандидат химических наук, доцент кафедры органической химии АГТУ. Область научных интересов: органическая электрохимия, препаративный синтез, термодинамика и кинетика химических реакций.

ЕЛЕНА ВЛАДИМИРОВНА ШИНКАРЬ — кандидат химических наук, доцент кафедры органической химии АГТУ. Область научных интересов: одноэлектронный перенос, механизм реакций, органическая электрохимия, активация сероводорода, синтез органических соединений серы.

414025 Астрахань, ул. Татищева, д. 16, АГТУ, тел. (8512)54-01-30, факс (8512)25-64-27, E-mail nberberova@astu.org

Введение

Начиная с 1960-х годов, объектом пристального внимания исследователей в области координационной химии является взаимодействие ионов переходных металлов с органическими лигандами, образующими при комплексообразовании стабильные радикалы [1— 3]. Комплексы с лигандами такого типа принято называть комплексами с «неинноцентными» (англоязычный термин), «небезучастными» [4] или редоксактивными лигандами [5]. «Неинноцентность» («небезучастность») проявляется в тех случаях, когда взаимодействующие граничные орбитали лиганда и металла (редокс-орбитали) энергетически близки, вследствие чего возникает неопределенность в описании их окисленного состояния [4, 6]. Особенностью комплексов этого типа является активное участие редоксорбиталей лиганда, неучастие или слабое участие редокс-орбиталей металла в химических и физических превращениях, обусловленных взаимодействием неспаренных электронов.

Такого рода взаимодействия характерны для активных центров металлопротеинов [7—9], что и обусловливает повышенный интерес к их изучению. Существуют природные редокс-ферменты, содержащие никель или кобальт, которые катализируют обменные процессы в живых организмах. В таких ферментах металлоцентр часто имеет плоскоквадратную конфигурацию и координирован с четырьмя атомами серы,

азота или с двумя атомами азота и двумя атомами серы [10—12]. Большинство комплексов данного типа имеют интенсивные полосы переноса заряда в близкой области ИК-спектра, что указывает на возможность использования их в оптических устройствах [13]. Кроме того, наличие неспаренных электронов в лигандах определяет их способность участвовать в радикальных реакциях.

Для генерации и фиксации стабильных или короткоживущих металлокомплексных частиц, возникающих за счет последовательных электронных переносов при восстановлении—окислении комплексов, целесообразно использовать электрохимические методы. При этом удается определять центр переноса электрона, степень окисления и стабильность возникающих интермедиатов, генерируемых из исходного соединения, а также термодинамический показатель ΔE_{ox-red} , определяющий ширину энергетической щели комплексных соединений.

Электрохимическое восстановление свободных лигандов

Наиболее изученными из подобных систем в координационной химии являются комплексы с 1,2-диоксоленовыми лигандами, представляющими собой типичные «небезучастные» лиганды. В публикациях последних лет [14—19] было показано, что родственные *о*-пирокатехинатам лиганды (*о*-аминофеноляты, *о*-аминотиофеноляты, 1,2-ди-

67

[©] ФГОУ ВПО «Астраханский государственный технический университет»

Схема 1. Диоксоленовая редокс-серия (X = Y = O):

BQ-o-бензохинон; SQ-o-бензосемихинон; CAT- пирокатехин. X, Y могут быть также, соответственно, Y=O, X=NH; Y=S, X=NH; Y=X=NH

тиолены) также редокс-активны и проявляют схожее с комплексами переходных металлов «неинноцентное» поведение.

Общее для этих лигандов — наличие одинакового структурного фра-гмента: все они представляют собой

бидентатные хелаты 1,2-дизамещенного фенильного кольца (схема 1). Такие лиганды могут существовать в различных состояниях окисления и разной степени протонирования:

- 1) ароматические моно- и ди-анионы с закрытой оболочкой;
 - 2) нейтральные o-хиноны;
- 3) o-бензосемихиноляты, т.е. органические радикалы с открытой оболочкой ($S_{rad} = 1/2$) [15].

Координация лиганда с металлом изменяет свойства лиганда: свободный лиганд восстанавливается и/или окисляется квазиобратимо или необратимо, а в комплексе редокспереходы становятся обратимыми. Например, свободные пространственно-затрудненные о-бензохиноны электрохимически последовательно восстанавливаются в две одноэлектронные обратимые стадии до соответствующего семихинолятного анион-радикала и далее — дианиона при потенциалах, указанных табл. 1 [20]. Координация с металлом приводит к смещению потенциалов восстановления в отрицательную область [21].

Результаты электрохимического исследования N-арилзамещен-ных хиноиминов отражают присутствие

становления при более отрицательных потенциалах. При этом перенос электрона сопровождается протеканием последующих химических реакций. Вольтамперные кривые искажаются из-за сильной адсорбции продукта электрохимической реакции. Это подтверждается появлением пика адсорбционного тока при менее отрицательных потенциалах [22].

двух квазиобратимых волн вос-

Координация данного типа лигандов с переходным металлом, как будет показано ниже, приводит не только к смещению потенциалов катодных пиков, но и к появлению более выраженной обратимости стадий переноса электрона.

L_S — серосодержащие лиганды; L_O —кислородсодержащие лиганды

 ${
m H}_2[{}^1{
m L}_{
m S}{}^{
m AP}]=2,4$ —ди-*трет*-бутил-*о*-аминотиофенол (AP - o- аминофенол)

 $H_2[^2L_S^{AP}] - o$ -аминотиофенол;

 $H_2[^3L^{CAT}] - 3,6$ -ди-*трет*-бутил-1,2-диоксибензол (САТ — o-катехолат или

 $H_2[^4L^{PDI}] = 3,5$ -ди-*трет*-бутил-*o*-фенилендиамин (PDI — *o*-фенилендиамин);

 $H_2[^5L^{PDI}] - N$ -фенил-o-фенилендиамин;

 $H_2[^6L^{PDI}] - 5$ -трифторметил-o-фенилендиамин;

 $H_2[^7L_0^{AP}] - 4,6$ -ди-*трет*-бутил-N-фенил-*o*-аминофенол;

 $H_2[^8L_0^{AP}] - 4,6$ -ди-*трет*-бутил-N(2,6-диметилфенил)-o-аминофенол

Схема 2

Таблииа 1

Электрохимические характеристики пространственно-затрудненных σ -бензохинонов и N-арилзамещенных хиноиминов.

Среда — СН₃CN, 0,1 M NBu₄ClO₄, V = 0.5 B/c, C (Q) = $5 \cdot 10^{-3}$ моль/л, $n_{\rm I,II}$ — число электронов первой (I) и второй (II) стадий относительно стандарта — ферроцена; $E'_{\rm пк}$, $E''_{\rm пк}$ — потенциалы восстановления (Ag/AgCl)

Соединение (Q)		$-E''_{\Pi K}$, B	$n_{\rm I}$	n_{II}
3,6-Ди <i>-трет</i> -бутил- <i>o</i> -бензохинон*	0,35	1,00	1	1
$3,5$ -Ди <i>-трет</i> -бутил- o -бензохинон *	0,44	0,92	1	1
4,6-Ди- <i>трет</i> -бутил-N-(2,6-диметилфенил)- o -иминобензохинон**	0,74	1,66	1	0,7
4,6-Ди- <i>трет</i> -бутил- N - $(2,5$ -ди- <i>трет</i> -бутилфенил)- o -иминобензохинон**	0,78	1,72	1	0,8

^{*} Рt-электрод; ** СУ-электрод, смесь ТГ Φ : АН = 3 : 1

В данной обзорной статье рассмотрены электрохимические характеристики комплексов переходных металлов, содержащих лиганды различных типов (Схема 2).

Редокс-превращения комплексных соединений

В большинстве случаев ключевая роль в редокспревращениях комплексных соединений отводится иону металла, степень окисления которого изменяется в результате переноса одного или нескольких электронов. Однако, не менее важной является стадия переноса электрона на органический лиганд. Интерес к комплексам с «неинноцентными» лигандами связан с их редокс-активностью и возможностью образования соединений, которые могут находиться в различных электронных состояниях. Такая ситуация реализуется

в случае электрохимической активности и лигандов, и металла, между которыми возможно эффективное электронное взаимодействие. В обзоре рассмотрены следующие комплексы:

 $\begin{array}{llll} & [Ni^{II}(^3L^{SQ})_2] & \textbf{(1)}, & [Ni^{II}(^2L_S^{ISQ})_2] & \textbf{(2)}, \\ & [Ni^{II}(^2L_S^{AP}-H)_2] & \textbf{(3)}, & [Ni^{II}(^1L_S^{ISQ})_2] & \textbf{(4)}, \\ & [Ni^{II}(^4L^{ISQ})_2] & \textbf{(5)}, & [Ni^{II}(^5L^{ISQ})_2] & \textbf{(6)}, \\ & [Ni^{II}(^4L^{ISQ})_2] & \textbf{(7)}, & [Pt^{II}(^2L_S^{ISQ})_2] & \textbf{(8)}, \\ & [Pt^{II}(^1L_S^{ISQ})_2] & \textbf{(9)}, & [Pt^{II}(^4L^{ISQ})_2] & \textbf{(10)}, \\ & [Pt^{II}(^5L^{ISQ})_2] & \textbf{(11)}, & [Pt^{II}(^7L_O^{ISQ})_2] & \textbf{(12)}, \\ & [Pt^{II}(^6L^{ISQ})_2] & \textbf{(13)}, & [Pd^{II}(^1L_S^{ISQ})_2] & \textbf{(14)}, \\ & [Pd^{II}(^4L^{ISQ})_2] & \textbf{(15)}, & [Pd^{II}(^5L^{ISQ})_2] & \textbf{(16)}, \\ & [Pd^{II}(^7L_O^{ISQ})_2] & \textbf{(17)}, & [Co^{II}(^8L_O^{ISQ})_2] & \textbf{(18)}, \\ & [Co^{II}(^1L_S^{ISQ})_2]_2 & \textbf{(19)}, \\ & [Co^{II}(^3L^{ISQ}) & (^5L^{IBQ})]_2(Cl_2 & \textbf{(21)}, \\ & [Pd^{II}(^5L^{ISQ}) & (^5L^{IBQ})]_2(OTf)_2 & \textbf{(22)}, \\ & [Pt^{II}(^5L^{ISQ}) & (^5L^{IBQ})]_2(OTf)_2 & \textbf{(23)} \\ & [^1L_S^{ISQ}]^- & -o\text{-иминобензосемихинонат-} \end{array}$

ная (1-) анион-радикальная форма $H_2[^1L_S^{AP}]; [^3L^{SQ}]^{1-} - o$ -бензосемихинолятный (1-) анион-радикал; $[^4L^{ISQ}]^{1-} - o$ -дииминобензосемихинонатная (1-) анион-радикальная форма $H_2[^4L^{PDI}]; [^5L^{1BQ}] - o$ -дииминобензохиноновая форма $H_2[^5L^{PDI}]$ лиганда; $[^7L_O^{ISQ}]^{1-} - o$ -иминобензосемихиноновая (1-) анион-радикальная форма $H_2[^7L_O^{AP}]; [^7L_O^{IBQ}] - o$ -иминобензохиноновая форма $H_2[^7L_O^{AP}]; [^7L_O^{AP}]$

В работе [14] было показано, что нейтральные плоскоквадратные комплексы типа $[M^{II}-X,Y]^0$ [где X,Y=(O, O); (NH, NH); (NH, O); (NH, S)], содержат двухвалентный ион переходного металла (Co, Ni, Pt, Pd) и два бидентатно связанных моноанионрадикала, которые способны к сильному антиферромагнитному взаимодействию. Таким образом, соединения, содержащие диамагнитный ион металла с электронной конфигурацией d^{8} , представляют синглетные бирадикалы. Электрохимическое исследование такого рода комплексов выявило наличие общей закономерности протекания

редокс-процессов, обнаруженной для комплексов Pt, Pd, Ni с незамещенными o-фенилендиаминовыми лигандами [23]. В частности, серия электронных переносов приводит к пяти бис-(хелатным)металлокомплексам общего вида $[M^{II}-X,Y]^Z$, где z=-2,-1,0,+1,+2. Интермедиаты взаимосвязаны четырьмя одноэлектронными переходами. В табл. 2 представлены электрохимические данные комплексов переходных металлов с «небезучастными» лигандами.

Комплексы 4, 5, 6, 8—18 характеризуются двумя последовательными обратимыми одноэлектронными стадиями восстановления и, соответственно, двумя последовательными стадиями окисления. На рис. 1, 2 представлены типичные циклические вольтамперограммы (ЦВА) комплексов (11) и (16).

Таблииа 2

Электрохимические потенциалы комплексов.

Среда — С H_2 С I_2 , 0,1 M NBu $_4$ С IO_4 , СV-электрод, потенциалы комплексов приведены в пересчете на Ag/AgCI, $E^1_{1/2}$ — $E^4_{1/2}$ — потенциалы стадий последовательных одноэлектронных переносов

№	Комплекс	$E^{1}_{1/2}$	$E^2_{1/2}$	$E^3_{1/2}$	$E^4_{1/2}$	Литература
1	$[Ni^{II}(^3L^{SQ})_2]^a$	-0,62	-0,07	_	_	[21]
2	$[\mathrm{Ni^{II}}(^{2}\mathrm{L_{S}^{ISQ}})_{2}]^{b}$	-1,10	-0.18	$1,10^{c}$		[24]
3	$[\mathrm{Ni^{II}}(^{2}\mathrm{L_{S}^{AP}-H})_{2}]^{b\ d}$	-1,58	_	0,42	1,16	[24]
4	$[Ni^{II}(^{1}L_{S}^{ISQ})_{2}]$	-1,26	-0.37	0,73	1,35	[15]
5	$[Ni^{II}(^4L^{ISQ})_2]$	-1,73	-1,04	-0,11	0,57	[16]
6	$[\mathrm{Ni^{II}}(^{5}\mathrm{L^{ISQ}})_{2}]^{*}$	-1,34	-0,64	0,32	0,64	_
		-1,44	-0,76	0,38	0,66	[16]
7	$[\mathrm{Ni^{II}}(^{7}\mathrm{L_{O}^{ISQ}})_{2}]$	-1,19	-0,62	$0,5^{e}$	_	[16]
8	$[Pt^{II}(^2L_S^{ISQ})_2]^*$	-1,10	-0,22	0,84	1,48	=
		$-0,75^{f}$	$0,03^{f}$	1,20 ^f		[25]
9	$[Pt^{II}(^{1}L_{S}^{ISQ})_{2}]$	-1,08	-0,25	0,96	1,64	[15]
10	$[Pt^{II}(^4L^{ISQ})_2]$	-1,77	-1,12	0,14	0,66	[16]
11	$[Pt^{II}(^5L^{ISQ})_2]^*$	-1,50	-0.84	0,38	0,88	=
		-1,55	-0,92	0,42	0,88	[16]
12	$[Pt^{II}(^7L_O^{ISQ})_2]$	-1,19	-0,59	0,65	1,15	[14]
13	$[Pt^{II}(^{6}L^{ISQ})_{2}]^{*}$	-1,14	-0,58	0,7	1,48	=
14	$[Pd^{II}(^{1}L_{S}^{ISQ})_{2}]$	-1,03	-0.34	0,71	1,29	[15]
15	$[Pd^{II}(^4L^{ISQ})_2]$	-1,41	-1,00	0,04	0,42	[16]
16	$[Pd^{II}(^5L^{ISQ})_2]^*$	-1,27	-0.7	0,32	0,64	_
		-1,27	-0,77	0,31	0,69	[16]
17	$[Pd^{II}(^{7}L_{O}^{ISQ})_{2}]$	-0,95	-0,54	0,53	0,92	[14]
18	$[Co^{II}(^{8}L_{O}^{ISQ})_{2}]^{i}$ *	-0,84	-0,36	0,22	$1,06^{d}$	_
19	$[Co^{II}(^1L_{S}{}^{ISQ})_2]_2$	-1,45	-0,27	0,28		[26]
20	$ \begin{array}{l} [\text{Co}^{\text{III}}(^5\text{L}^{\text{ISQ}})_2\text{H}_2{}^5\text{L}^{\text{PDI}})] \\ ((\text{CH}_3)_3\text{CCOO})^* \end{array} $	-0,66	-0,28	$0,28^{g}$	0,74	_
_	$H_2(^2L_S^{AP})^{a\ d*}$	_	-1,42	0,79	1,53	_
_	$H_2(^5L^{PDI})^h *$	_	_	0,66	1,12	_

Примечание. *Результаты получены авторами; a — Pt-электрод, CH $_3$ CN; b — потенциалы пиков в ДМФА; c — необратимый пик, число электронов > 1; d — потенциал необратимой волны; e — обратимая двухэлектронная волна; f — в растворе ацетона, квазиобратимая волна; g — волна восстановления комплекса; h — потенциал пика; i — потенциалы полуволны в растворе $T\Gamma\Phi/CH_3CN$

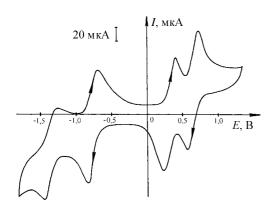


Рис. 1. Циклическая вольтамперограмма комплекса Pd с *о*-семихинондииминовыми лигандами (16).

Среда — СН $_2$ СІ $_2$, 0,1 M NBu $_4$ СІО $_4$, СУ-электрод, потенциалы относительно Ag/AgCl, $C=5\cdot 10^{-3}$ моль/л

В пределах лигандов одного типа потенциалы пиков наблюдаются в узких диапазонах значений. Например, для комплексов, содержащих о-диимино- $-1,27 \div (-1,50)$ B, бензосемихиноновые лиганды: $-0.64 \div (-0.84)$ В, $0.32 \div 0.38$ В, и $0.64 \div 0.88$ В. Аналогичные закономерности можно наблюдать и для остальных видов лигандов. При этом редокспотенциалы комплексов независимо от природы центрального иона металла мало отличаются друг от друга в одной серии лигандов, что свидетельствует о протекании окислительно-восстановительных процессов в данном случае по лигандам. Ион металла при этом остается в двухвалентном состоянии в каскадной серии электронных переносов. Схема представлена на примере о-иминобензосемихиноновых комплексов:

$$\begin{split} & \left[\mathbf{M}^{\mathrm{II}}(^{7}\mathbf{L}_{\mathrm{O}}\ ^{\mathrm{IBQ}})_{2} \right]^{2+} \underbrace{\stackrel{-\overline{e}}{\longleftarrow}}_{+\overline{e}} \left[\mathbf{M}^{\mathrm{II}}(^{7}\mathbf{L}_{\mathrm{O}}\ ^{\mathrm{IBQ}})(^{7}\mathbf{L}_{\mathrm{O}}\ ^{\mathrm{ISQ}}) \ \right]^{+} \underbrace{\stackrel{-\overline{e}}{\longleftarrow}}_{+\overline{e}} \left[\mathbf{M}^{\mathrm{II}}(^{7}\mathbf{L}_{\mathrm{O}}\ ^{\mathrm{ISQ}})_{2} \right] \\ & \underbrace{\stackrel{+\overline{e}}{\longleftarrow}}_{-\overline{e}} \left[\mathbf{M}^{\mathrm{II}}(^{7}\mathbf{L}_{\mathrm{O}}\ ^{\mathrm{AP}} - \mathbf{H})(^{7}\mathbf{L}_{\mathrm{O}}\ ^{\mathrm{ISQ}}) \ \right]^{-} \underbrace{\stackrel{+\overline{e}}{\longleftarrow}}_{-\overline{e}} \left[\mathbf{M}^{\mathrm{II}}(^{7}\mathbf{L}_{\mathrm{O}}\ ^{\mathrm{AP}} - \mathbf{H})_{2} \ \right]^{2-} \end{split}$$

Схема 3

Ди-, монокатионы и ди-, моноанионы зафиксированы методом ЦВА.

Влияние заместителей в бензольном кольце на значения потенциалов пиков рассмотрено на примере комплексов никеля и платины. Потенциал восстановления комплекса никеля $[Ni^{II}(^2L_S{}^{ISQ})_2]$ с незамещенными лигандами на 200 мВ ниже потенциала восстановления $[Ni^{II}(^{1}L_{S}^{ISQ})_{2}]$, содержащего *трет*-бутильные заместители. При развертке потенциала в анодную область для комплекса $[Ni^{II}(^2L_S^{ISQ})_2]$ фиксируется необратимая волна окисления при потенциале 1,10 В, высота которой соответствует числу электронов, превышающему единицу, что характеризует участие металла в редокс-процессе. Донорные заместители в $[Ni^{II}(^{1}L_{S}^{ISQ})_{2}]$ способствуют протеканию обратимых процессов переноса электрона, вовлекающих лиганды. Для платиновых комплексов $[Pt^{II}(^{1}L_{S}^{ISQ})_{2}]$ $[Pt^{II}(^2L_5^{ISQ})_2]$ влияние заместителей сказывается только в анодной области: потенциалы окисления лигандов с заместителями-донорами на 120-160 мВ ниже потенциалов соединений с незамешенными аналога-

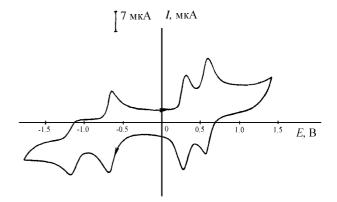


Рис. 2. Циклическая вольтамперограмма комплекса Pt с *о*-семихинондииминовыми лигандами (11).

Среда — $\rm CH_2Cl_2$: $\rm CH_3CN=1:1,\,0,1$ $M\,\rm NBu_4ClO_4,$ $\rm Pt$ -электрод, потенциалы относительно Ag/AgCl, $C=5\cdot 10^{-3}\,\rm моль/л$

ми. Замена *трет*-бутильных заместителей в $[Pt^{II}(^4L^{ISQ})_2]$ на акцепторные трифторметильные в $[Pt^{II}(^6L^{ISQ})_2]$ приводит к общему сдвигу потенциалов окисления комплекса в положительную область на 600 мВ.

Комплекс $[Ni^{II}(^2L_S^{AP}-H)_2]$, пики окисления/восстановления которого необратимы, под воздействием кислорода воздуха окисляется с переходом в соединение $[Ni^{II}(^2L_S^{ISQ})_2]$ [24]. Однако необратимый пик окисления при потенциале 1,10—1,16 В сохраняется и отличается от потенциалов первых пиков окисления аналогичного платинового комплекса. Такое сравнение в данном случае вполне уместно, так как потенциалы платиновых и никелевых комплексов незначительно различаются и в случае лигандов других типов, поэтому скорее всего в редокс-процесс вовлекается металлоцентр.

Влияние замены гетероатома в металлоцикле было рассмотрено на примере комплексов никеля. Комплекс $[\mathrm{Ni}^{\mathrm{II}}(^{3}\mathrm{L^{\mathrm{SQ}}})_{2}]$, содержащий o-семихинолятные лиганды, как и следовало ожидать, восстанавливается наиболее легко (при потенциалах -0,62 и -0,07 В, соответственно) вследствие сильного акцепторного влияния двух атомов кислорода. Замена диоксоленовых лигандов на менее электроноакцепторные N,N-координированные o-дииминобензосемихинолятные лиганды в комплексе $[\mathrm{Ni}^{\mathrm{II}}(^{4}\mathrm{L^{\mathrm{ISQ}}})_{2}]$ приводит к максимальному сдвигу потенциалов в катодном направлении на 900 мВ.

По значениям потенциалов комплексы никеля, содержащие N,O-донорные и N,S-донорные лиганды, занимают промежуточное положение между O,O-координированными и N,N-координированными комплексами никеля. При этом комплексу никеля, содержащему в металлоцикле более электроотрицательный атом кислорода, соответствуют потенциалы, смещенные в анодную область. Потенциалы N,S-координированных комплексов платины и палладия сдвинуты к анодным значениям потенциалов, по сравнению с потенциалами кислородных аналогов. Разница составляет примерно 200—300 мВ, что можно объяснить более эффективным перекрыванием молекулярных орбиталей атомов серы и металла в комплексах.

Восстановление лигандов комплекса $[Ni^{II}(^{7}L_{o}^{ISQ})_{2}]$ осуществляется при потенциалах, близких к значениям потенциалов Pt и Pd аналогов согласно схеме 4:

$$\begin{bmatrix} \operatorname{Ni}^{\mathrm{II}}(^{7}\operatorname{L}_{\mathrm{O}}^{\mathrm{ISQ}})_{2} \end{bmatrix}^{2++\overline{e}} & \left[\operatorname{Ni}^{\mathrm{II}}(^{7}\operatorname{L}_{\mathrm{O}}^{\mathrm{ISQ}})(^{7}\operatorname{L}_{\mathrm{O}}^{\mathrm{IBQ}}) \right]^{+} \overset{k_{f}}{\longleftarrow} \\ & \left[\operatorname{Ni}^{\mathrm{III}}(^{7}\operatorname{L}_{\mathrm{O}}^{\mathrm{ISQ}})_{2} \right]^{++\overline{e}} & \left[\operatorname{Ni}^{\mathrm{II}}(^{7}\operatorname{L}_{\mathrm{O}}^{\mathrm{ISQ}})_{2} \right] \\ & & \left[\operatorname{Cxema} \ \mathbf{4} \right]$$

В анодной области фиксируется двухэлектронный обратимый процесс окисления, для которого наблюдается прямопропорциональная зависимость разности между потенциалами пиков (ΔE) от скорости развертки потенциала (V). Такое поведение предполагает наличие гомогенной реакции первого порядка и описывается механизмом ЕСЕ с участием центрального иона никеля по схеме 5:

$$\begin{bmatrix} \operatorname{Ni}^{\mathrm{II}}(^{7}\operatorname{L}_{\mathrm{O}}^{\mathrm{ISQ}})_{2} \end{bmatrix}$$

$$\downarrow -\overline{e}$$

$$\left[\operatorname{Ni}^{\mathrm{III}}(^{7}\operatorname{L}_{\mathrm{O}}^{\mathrm{ISQ}})_{2} \right]^{+} \underbrace{k_{f}}_{k_{b}} \left[\operatorname{Ni}^{\mathrm{II}}(^{7}\operatorname{L}_{\mathrm{O}}^{\mathrm{ISQ}})(^{7}\operatorname{L}_{\mathrm{O}}^{\mathrm{IBQ}}) \right]$$

$$\downarrow -\overline{e}$$

$$\left[\operatorname{Ni}^{\mathrm{III}}(^{7}\operatorname{L}_{\mathrm{O}}^{\mathrm{ISQ}})(^{7}\operatorname{L}_{\mathrm{O}}^{\mathrm{IBQ}}) \right]^{2+} \underbrace{k_{f}}_{k_{b}} \left[\operatorname{Ni}^{\mathrm{II}}(^{7}\operatorname{L}_{\mathrm{O}}^{\mathrm{IBQ}})_{2} \right]^{2+}$$

Схема 5

Редокс-процесс соответствует химически полностью обратимому взаимопревращению $[\mathrm{Ni}^{\mathrm{II}}(^{7}\mathrm{L_{O}}^{\mathrm{ISQ}})_{2}]$ в дикатион и обратно через два интермедиата [14].

дикатион и обратно через два интермедиата [14]. Комплекс $[\mathrm{Co^{II}}(^{1}\mathrm{L_{S}}^{\mathrm{ISQ}})_{2}]_{2}$, в твердом состоянии представляющий димер, в растворе существует в равновесии со своим мономером [26]. Этот комплекс может быть обратимо окислен и восстановлен электрохимически, образуя монокатион и моноанион, соответственно. Электронные спектры моноаниона и монокатиона показали, что ни окисление, ни восстановление не осуществляются по лигандам. Предполагается присутствие двух $(^{1}\mathrm{L_{S}}^{\mathrm{ISQ}})$ π -радикальных лигандов и металл-центрированной редокс-активности:

$$\left[\operatorname{Co^{III}}(^{1}\operatorname{L}_{S}^{\operatorname{IBQ}})_{2} \right] \xrightarrow{+\overline{e}} \left[\operatorname{Co^{II}}(^{1}\operatorname{L}_{S}^{\operatorname{ISQ}})_{2} \right] \xrightarrow{+\overline{e}} \left[\operatorname{Co^{II}}(^{1}\operatorname{L}_{S}^{\operatorname{ISQ}})_{2} \right]$$

$$E^{3}_{1/2} \qquad E^{2}_{1/2}$$

$$\operatorname{Cyang 6}$$

Комплекс $[\mathrm{Co^{III}}(^5\mathrm{L^{ISQ}})_2$ $(\mathrm{H_2^5L^{PDI}})](\mathrm{CH_3})_3\mathrm{CCOO}$ (20), электрохимические показатели которого были определены в аналогичных условиях, восстанавливается в три одноэлектронные стадии. Потенциалы первых двух идентичны $E^2_{1/2}$, $E^3_{1/2}$ для нейтрального мономера $[\mathrm{Co^{II}}(^1\mathrm{L_S^{ISQ}})_2]$. Независимо от природы лиганда потенциалы комплексов одинаковы, на основании

чего можно предположить, что процессы восстановления комплекса ${\bf 20}$ также протекают по иону металла. В то же время значение $E^1{}_{1/2}$ комплекса близко к значениям потенциалов восстановления $E^2{}_{1/2}$ комплексов никеля и палладия с аналогичными лигандами $({\bf 6, 16})$, что подтверждает участие лигандов в редокс-процессе.

Потенциалы комплекса $[\mathrm{Co^{II}(^8L_O^{ISQ})_2}]$ несколько отличаются от потенциалов комплексов Ni, Pt, и Pd с лигандами этого типа, что можно объяснить разными условиями электрохимического эксперимента, в частности заменой $\mathrm{CH_2Cl_2}$ на $\mathrm{T}\Gamma\Phi$ (см. табл. 2), поскольку комплекс способен вступать во взаимодействие с метиленхлоридом [27]. Однако электрохимические характеристики $[\mathrm{Co^{III}(^7L_O^{ISQ})_2}]$ [28, 29] отражают наличие четырех одноэлектронных обратимых стадий переноса электрона, происходящих по лигандам, потенциалы которых довольно близки со значениями потенциалов $[\mathrm{Co^{II}(^8L_O^{ISQ})_2}]$. Это указывает на незначительное влияние валентного состояния иона металла и свидетельствует о вовлечении лигандного окружения комплекса $[\mathrm{Co^{II}(^8L_O^{ISQ})_2}]$ в редокс-процессы.

Термодинамические характеристики комплексных соединений

Применение электрохимических методов для обратимых редокс-переходов позволяет по значению $E_{1/2}$, являющемуся термодинамической величиной, оценить энергию молекулярной орбитали комплекса, на которой происходят электронные изменения в ходе окислительно-восстановительной реакции: при восстановлении на HBMO, а в случае окисления — на B3MO соединения [30]. Таким образом, сравнивая редокслотенциалы ряда комплексных соединений, можно судить об относительном расположении граничных орбиталей, участвующих в электронных переносах. Зависимость между значениями $(E_{1/2})_{ox}$, $(E_{1/2})_{red}$ и энергиями $E_{\rm B3MO}$, $E_{\rm HBMO}$ позволяет определить разность ΔE_{ox-red} как:

$$E_{\text{B3MO}} - E_{\text{HBMO}} = (E_{1/2})_{ox} - (E_{1/2})_{red} = \Delta E_{ox-red}$$

Следовательно, определение величин $E_{1/2}$ комплексных соединений, которые отвечают обратимым одноэлектронным процессам, дает возможность оценить разность энергий между граничными молекулярными орбиталями — ΔE_{ox-red} [31, 32].

Значения энергетической щели $\Delta E_{ox\text{-}red}$, в отличие от ΔG^0 , не зависят от условий измерения потенциалов, так как рассчитываются на основании величин $E_{1/2}$ обратимых одноэлектронных редокс-процессов. Поэтому для установления влияния природы центрального иона металла или вида лиганда корректнее применять значения $\Delta E_{ox\text{-}red}$. Определение разностей между $E^2_{1/2}$, $E^1_{1/2}$ и $E^4_{1/2}$, $E^3_{1/2}$ позволяет оценить взаимодействие между редокс-центрами и сравнить, насколько смешаны граничные орбитали металла и лигандов.

Комплексы, в которых металл-центрированные и лиганд-центрированные граничные орбитали значительно различаются по энергии, характеризуются существенной разницей между редокс-потенциалами. Например комплекс [Ru(bpy)₂]²⁺ подвергается металлцентрированному окислению при 1,26 В и серии процессов восстановления по лигандам, начиная от —1,35 В. Эти редокс-переходы могут быть отнесены к определенному центру переноса электрона, так как

Таблица 3

существует значительная разница в энергии между $d(\pi)$ -орбиталью металла (B3MO) и лигандными π^* -орбиталями (HBMO), где локализованы редокспроцессы [33].

В комплексах с «небезучастными» лигандами существует сильное смешение между орбиталями лиганда и металла. В некоторых случаях энергии этих орбиталей оказываются близки. Это приводит к возникновению внутримолекулярного электронного переноса между редокс-изомерами, отличающимися распределением заряда при равновесных условиях в процессе, который описывается как пример валентной таутомерии [34, 35]. Квантовохимические расчеты для комплексов $[Ni^{II}(^{4}L^{ISQ})_{2}]$, $[Pt^{II}(^{7}L_{O}^{ISQ})_{2}]$ и o-фенилендиаминовых лигандов, представленные в работах [36,37], выявили следующие закономерности. Роль редокс-активной молекулярной орбитали о-фенилендиаминового лиганда выполняет $2b_2$ орбиталь, которая является дважды занятой молекулярной орбиталью в дианионе $({}^4L^{PDI})^2$ -, спин-занятой молекулярной орбиталью (СЗМО) в моноанионе (4LISQ) и свободной в нейтральном состоянии (⁴L^{IBQ}).

Диаграммы молекулярных орбиталей комплексов отражают в верхней валентной области три π^* молекулярных орбитали лигандов (рис. 3). ВЗМО ($1b_{1u}$), лежит ниже по энергии и является СЗМО в монокатионе, в то время как НВМО ($2b_{2g}$) выше по энергии и является СЗМО в моноанионе. Эти орбитали аналогичны главным образом симметричным и асимметричным комбинациям СЗМО свободного семихинолятного лиганда, энергетическая щель между которыми составляет ≈ 1 эВ. При одноэлектронном окислении ($^4L^{\rm ISQ}$) – лиганд становится ярко выраженным π -акцептором в противоположность полностью восстановленной форме лиганда ($^4L^{\rm PDI}$) 2 -, которая проявляет сильные π -донорные свойства.

В табл. 3 представлены полученные нами расчетным путем на основе электрохимических данных (см. табл. 2) значения энергетической щели между редоксорбиталями $\Delta E_{ox-red} = (E^3_{1/2})_{ox} - (E^2_{1/2})_{red}$, разницы между пиками $\Delta E_{2-1} = E^2_{1/2} - E^1_{1/2}$ и $E_{4-3} = E^4_{1/2} - E^3_{1/2}$. Значения ΔE_{ox-red} хорошо согласуются с квантовохимическими расчетами.

Для комплекса $[Ni^{II} (^4L^{ISQ})_2]$ величина энергетической щели составляет 1,14 В. Как можно заметить,

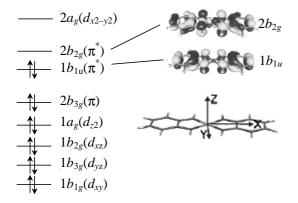


Рис.З Редокс-активные молекулярные орбитали нейтральных комплексов [$\mathbf{M}^{\mathrm{II}}(^{5}\mathbf{L}^{\mathrm{ISQ}})_{2}$], где $\mathbf{M}=\mathbf{Pt},\ \mathrm{Ni},\ \mathbf{Pd},\ \mathbf{u}$ выбранная система координат

Термодинамические характеристики комплексов				
№	Комплекс	ΔE_{ox-red} , B	ΔE_{2-1} , mB	ΔE_{4-3} , mB
1	$[Ni^{II}(^3L^{SQ})_2]$	_	550	
2	$[Ni^{II}(^2L_S^{ISQ})]$	_	920	_
8	$[Pt^{II}(^2L_S^{ISQ})_2]$	1,06	880	640
4	$[Ni^{II}(^{1}L_{S}^{ISQ})_{2}]$	1,1	890	620
9	$[Pt^{II}(^{1}L_{S}^{ISQ})_{2}]$	1,21	830	680
14	$[Pd^{II}(^{1}L_{S}^{ISQ})_{2}]$	1,05	690	580
7	$[Ni^{II}(^7L_O^{ISQ})_2]$	_	570	_
12	$[Pt^{II}(^7L_O^{ISQ})_2]$	1,24	600	500
17	$[Pd^{II}(^7L_O^{ISQ})_2]$	1,07	410	390
18	$[Co^{II}(^{8}L_{O}^{ISQ})_{2}]$	0,58	480	_
10	$[Pt^{II}(^4L^{ISQ})_2]$	1,26	650	520
5	$[Ni^{II}(^4L^{ISQ})_2]$	1,14	690	460
15	$[Pd^{II}(^4L^{ISQ})_2]$	1,05	410	380
6	$[Ni^{II}(^5L^{ISQ})_2]$	0,96	700	320
11	$[Pt^{II}(^5L^{ISQ})_2]$	1,22	660	500
16	$[Pd^{II}(^5L^{ISQ})_2]$	1,02	570	320
13	$[Pt^{II}(^6L^{ISQ})_2]$	1,28	560	780

существует определенная последовательность в изменении ΔE_{ox-red} в зависимости от природы центрального иона металла: для палладиевых комплексов эта величина находится в диапазоне значений 1,00 ÷ 1,07 В, никелевые комплексы занимают промежуточное значение от 1,11 ÷ 1,14 В, кроме комплекса [Ni^{II} (5 L^{ISQ})₂], для комплексов платины ΔE_{ox-red} составляет 1,20 ÷ 1,28 В, исключая комплекс [Pt^{II} (2 L_S^{ISQ})₂].

Полученные результаты указывают на энергетическую близость граничных орбиталей в рассмотренных комплексах. Тем не менее, из данных табл. 3 следует, что минимальное значение ΔE_{ox-red} соответствует комплексу кобальта 18 и равно 0,58 эВ. Это значение ниже, чем полученное квантовохимическими расчетами для комплекса [$Pt^{II}(^7L_O^{ISQ})_2$] $\Delta E_{ox-red} \approx 1$ эВ. Комплекс $[Co^{II}(^{8}L_{O}^{ISQ})_{2}]$ по магнетохимическим данным имеет основное состояние (S = 1/2), из ЭПР-спектра следует, что неспаренный электрон локализован на атоме металла [27], в отличие от большинства рассмотренных диамагнитных комплексов. Подобная ситуация наблюдается в комплексе меди с незамещенными о-иминобензосемихиноновыми лигандами [14], для которого величина энергетической щели составляет 0,76 эВ. Комплекс меди также характеризуется основным состоянием (S = 1/2) и локализацией электрона на атоме металла. Следовательно, в отличие от диамагнитных комплексов соединения, имеющие неспаренный электрон на металлоцентре обладают меньшей разницей между граничными редоксорбиталями. Лиганды во всех исследуемых комплексах имеют изоэлектронные π-системы и их влияние незначительно сказывается на ΔE_{ox-red} минимальное значение энергетической щели (исключая 18) отвечает комплексам, содержащим лиганды (${}^5L^{ISQ}$) и (${}^1L_{S}{}^{ISQ}$).

Существенное различие потенциалов полуволн между лиганд-центрируемыми редокс-процессами (ΔE_{2-1} , ΔE_{4-3}) согласуется с высокой степенью металллиганд орбитального смешения, характерного для комплексов с редокс-активными лигандами. Из табл. 3 следует, что максимальные значения ΔE_{2-1} ,

Таблица 4

Сравнительные характеристики электрохимических потенциалов (см. табл. 2) моно- и биядерных комплексов Ni, Pt, Pd с *о*-семихинондииминовыми лигандами.

Среда — $CH_2Cl_2:AH~(1:1),~0,1~M~NBu_4ClO_4,~Pt$ -электрод, потенциалы относительно Ag/AgCl

Соединение	E^1_n	E^2_n	E^3_n	E^4_n	Литература
11 [Pt ^{II} (⁵ L ^{ISQ}) ₂]	-1,50	-0.82	0,42	0,84	[41]
23 $[Pt^{II}(^{5}L^{ISQ})(^{5}L^{IBQ})]_{2}(OTf)_{2}$	-1,03	-0,54	0,89	1,52	[41]
16 $[Pd^{II}(^5L^{ISQ})_2]$	-1,20	-0,72	0,30	0,58	[41]
22 $[Pd^{II}(^5L^{ISQ})(^5L^{IBQ})]_2(OTf)_2$	-0,68	-0.38	0,72	1,24	[41]
5 $[Ni^{II}(^4L^{ISQ})_2]^a$	-1,67	-1,01	0,1	0,30	[16]
21 $[Ni^{II}(^{4}L^{ISQ})(^{4}L^{IBQ})]_{2}Cl_{2}{}^{a}$	-1,63	-1,01	0,09	0,28	[16]

а Потенциалы полуволны, определенные в АН на СУ-электроде (метод ЦВА)

 ΔE_{4-3} характерны для комплексов с серосодержащими лигандами ($^1L_S{}^{ISQ},\ (^2L_S{}^{ISQ})_2),\$ минимальные значения — для комплексов с лигандами ($^3L^{SQ})$ и ($^7L_O{}^{ISQ}),\$ что можно объяснить меньшей делокализацией заряда внутри металл-хинонового кольца, по сравнению с родственными комплексами с дитиоленовыми и дииминовыми лигандами [34].

Значения ΔE_{2-1} , ΔE_{4-3} практически одинаковые для комплексов платины и никеля с каждым типом лигандов. Это свидетельствует о незначительном влиянии металла и близкой природе орбиталей, участвующих в редокс-процессах, принадлежащих В о-иминобензосемихиноновым лигандам. Однако влияние металлоцентра на редокс-процессы все же просматривается. Как можно отметить, значения ΔE_{4-3} и ΔE_{2-1} отличаются друг от друга (табл. 3). Разница потенциалов между двумя последовательными редокспереходами, отвечающими изменению состояния окисления лигандов в комплексе при восстановлении $(^2L_S^{AP}-H)/(^2L_S^{ISQ}),$ — ΔE_{2-1} возникает в результате электростатического взаимодействия между двумя лиганд-центрированными процессами. Такое же значение ΔE_{4-3} можно было ожидать для перехода лигандов ($^2\mathrm{L_S}^{\mathrm{ISQ}}$) в форму ($^2\mathrm{L^{\mathrm{IBQ}}}$) в анодной области, так редокс-процесс также является центрированным и степень взаимодействия должна быть аналогичной. Но, как было показано в работе [16], орбиталь $2b_{2g}$ моноаниона имеет вклад 15% металлической орбитали, в отличие от монокатиона, в котором орбиталь $1b_{ul}$ в большей степени является СЗМО лиганда. Поэтому пара ($^2\mathrm{L_S}^{\mathrm{AP}}\mathrm{-H}$)/($^2\mathrm{L_S}^{\mathrm{ISQ}}$) имеет большее значение ΔE_{2-1} вследствие вклада центрального иона металла в редокс-орбитали и, следовательно, большего электростатического взаимодействия между двумя последовательно добавляемыми электронами.

Монокатионы и моноанионы данных комплексов можно рассматривать как делокализованные смешанно-валентные виды (класс III) в соответствии с классификацией Робина—Дея [38], в которых наблюдается делокализация заряда между редокс-центрами.

Стоит отдельно рассмотреть свойства биядерных аналогов комплексов [$Ni^{II}(^4L^{ISQ})_2$], [$Pt^{II}(^5L^{ISQ})_2$], [$Pd^{II}(^5L^{ISQ})_2$], представляющих собой дикатионы, содержащие слабую связь металл—металл.

Электрохимическое окисление моноядерного комплекса никеля приводит к образованию в растворе монокатионов, которые, димеризуясь, дают биядерный, металл-металл связанный диамагнитный дикати-

он. Химическое окисление комплекса платины также приводит к образованию димера в растворе [39, 40]. Рентгеноструктурные характеристики лигандов в соединении [Ni $^{11}(^4L^{ISQ})(^4L^{IBQ})]_2Cl_2$ указывают, что фрагменты ($^4L^{ISQ}$) и ($^4L^{IBQ}$) имеют идентичные длины связей С—С и С—N, что свидетельствует о делокализации неспаренного электрона на обоих лигандах. Подобная ситуация наблюдается для биядерного комплекса платины, существующего в растворе в виде димера, где длины связей С—С, С—N имеют промежуточное значение для таких же связей N,N-координированных лигандов ($^4L^{ISQ}$) и ($^4L^{IBQ}$) [16]. Таким образом,

делокализованная электронная структура является превалирующей в этих комплексах.

Электрохимическое окисление палладиевого мономера приводит к образованию парамагнитного монокатиона [16], спектр поглощения которого аналогичен спектру дикатиона $[Pd^{II}(^5L^{ISQ})(^5L^{IBQ})]_2(OTf)_2$, полученного химическим путем. Следовательно, можно предположить, что биядерный палладиевый комплекс скорее всего существует в растворе в виде монокатиона.

Значения потенциалов для дикатионного комплекса никеля близки к значениям потенциалов, наблюдаемым для мономера, что свидетельствует об участии одних и тех же молекулярных орбиталей в редокспроцессе спин-занятых молекулярных орбиталей о-иминобензосемихиноновых лигандов.

Электрохимическое исследование моно- и биядерных комплексов платины и палладия показало [41], что их редокс-потенциалы значительно различаются. Процесс окисления биядерных соединений затрудняется по сравнению с окислением моноядерных аналогов: в первой стадии сдвиг составляет 470 мВ для Рt комплекса и 420 мВ — для Рd комплекса; значения сдвигов потенциалов второй стадии Рt — 680 мВ и Рd — 660 мВ. В табл. 4 для биядерных комплексов Рt, Рd приведены данные, определенные через 1 ч после стояния комплексов.

Как упомянуто выше, редокс-активными орбиталями являются орбитали, аналогичные, главным образом, симметричным и асимметричным комбинациям C3MO своболного о-иминобензосемихинонатного лиганда. Поэтому при окислении комплекса удаление электронов с орбитали $1b_{1u}$ не должно зависеть от природы металлоцентра, так как данные орбитали не взаимодействуют с орбиталями металла. Таким образом, E_n^4 моноядерных комплексов и E_n^3 их биядерных аналогов должны быть близки по потенциалам. Данные условия соблюдаются только для комплексов платины: $[Pt^{II}(^5L^{ISQ})_2]$, $[Pt^{II}(^5L^{ISQ})(^5L^{IBQ})]_2(OTf)_2$. Для соответствующих производных палладия потенциалы значительно различаются, что, вероятно, свидетельствует об участии *d*-электронов атомов Pd в формировании биядерной структуры дикатиона [41].

Однако можно заметить, что потенциал восстановления E^2_n палладиевого мономерного комплекса (**16**) близок по значению с потенциалом E^1_n биядерного соединения (**22**) (см. табл. 4). Следовательно, исходя из предположения, что биядерный комплекс $[\mathrm{Pd^{II}}(^5\mathrm{L^{ISQ}})]_2(\mathrm{OTf})_2$ существует в растворе в виде

монокатиона, становится объяснимой электрохимическая картина: монокатион последовательно восстанавливается сначала до нейтрального состояния, а затем до моноаниона $[Pd^{II}(^5L^{ISQ})(^5L^{PDI})]^-$ при E^1_n , равном E^2_n аниона, полученного из комплекса $[Pd^{II}(^5L^{ISQ})_2]$.

Заключение

Таким образом можно констатировать, что электрохимические исследования комплексов переходных металлов с «небезучастными» лигандами выявили общие механизмы протекания процессов окисления восстановления, которые в большинстве случаев осуществляются по редокс-активным лигандам. Определение термодинамических характеристик показало, что разность энергий между редокс-орбиталями комплексов незначительна и составляет приблизительно 1 В. Комплексам свойственна специфичная электронная лабильность, характеризующаяся легкостью и управляемостью окислительно-восстановительных превращений в условиях электрохимического эксперимента. Такие управляемые электронные переходы позволяют рассматривать эти комплексы в качестве перспективных катализаторов для биохимических и химических реакций. Для реализации химических процессов необходимы каталитические системы, термодинамически устойчивые и способные подвергаться химической регенерации. Комплексы переходных металлов с «небезучастными» лигандами способны участвовать в реакциях, сопряженных с переносом электрона на субстрат, выступая, в частности, в роли внешнесферных переносчиков электрона при проведении электросинтеза. Они также могут быть окислителями различных малых молекул до соотвествующих ион-радикальных интермедиатов. При этом комплексы восстанавливаются до дианионной формы, которая легко регенерируется (окисляется) при действии кислорода воздуха.

В работах [42, 43] была изучена каталитическая активность комплексов платины и палладия с N,N- и N,S-координированными лигандами. Показано, что комплексы способны к окислению молекулярного сероводорода с образованием высокореакционноспособной частицы — катион-радикал сероводорода. Это позволило использовать данные комплексы в синтезах многих сероорганических соединений: алифатических, ароматических меркаптанов и соответствующих сульфидов и дисульфидов. Комплексы с подобного типа лигандами являются модельными соединениями для изучения редокс-активных биологических систем. Знание абсолютного числа электронов, участвующих в окислительно-восстановительных реакциях, позволяет понять механизмы каталитических циклов ферментативных систем.

Таким образом, практическая значимость процессов, в которых участвуют комплексы переходных металлов с «неинноцентными» лигандами, требует более глубокого понимания механизмов редокс-процессов для целенаправленного подбора катализаторов и условий проведения каталитических реакций.

Работа выполнена при финансовой поддержке РФФИ (грант № 03-03-32256).

ЛИТЕРАТУРА

- 1. Jazdzewski B.A., Tolmann W.B. Coord. Chem. Rev., 2000, v. 200-202, p. 633.
- 2. Muller J., Kikuchi A., Bill E. e. a. Inorg. Chim. Acta, 2000, v. 297, p. 265—277.
- 3. Милаева Е.Р. Изв. РАН. Сер. хим., 2001, № 4, с. 549—562.
- 4. Белоглазкина Е.К., Моисеева А.А., Чижевский А.А. и др. Там же, 2003, № 9, с. 1885
- 5. Pierpont C.G., Lange C.W. Prog. Inorg. Chem., 1994, v. 41, p. 331.
- 6. Ward M.D., McCleverty J.A. J. Chem. Soc. DaltonTrans., 2002, p. 275.
- 7. Sigel H., Sigel A. Metalloenzymes involving Amino Acid Residue and Related Radical. New York: Marcel Dekker, 1994, v. 30.
- 8. Stubbe J., Van der Donk W.A. Chem. Rev., 1998, v. 98, p. 705.
- 9. Rospert S., Voges M. e. a. Eur. J. Biochem., 1992, v. 210, p. 101.
- 10. *Thauer R.K.* Microbiologie, 1998, v. 144, p. 2377.
- 11. Hausinger R.P. J. Biol. Inorg. Chem., 1997, 2, p. 279.
- 12. Lancaster J.R. The Bioinorganic Chemistry of Nickel. Weinheim: VCH, 1988.
- 13. Mortimer R.J. Elecrochim. Acta, 1999, v. 44, p. 2971.
- 14. Chaudhuri P., Verani C.N., Bill E. e. a. J. Am. Chem. Soc., 2001, v. 123, p. 2213.
- 15. Herebian D., Bothe E., Bill E. e. a. Ibid., 2001, v. 123, p. 10012.
- 16. Herebian D., Bothe E., Neese F. e. a. Ibid., 2003, v. 125, p. 9116.
- 17. Ghosh P., Bill E., Weyhermuller Te. a. Ibid., 2003, v. 125, p. 3967.
- 18. Ghosh P., Begum A., Bill E. e. a. Inorg. Chem., 2003, v. 42, p. 3208.
- 19. Kallol R., Bill E., Weyhermuller T., Wieghardt K. J. Am. Chem. Soc., 2005, v. 127, p. 5641.
- 20. Шинкарь Е.В. Дис. ... канд. хим. наук. Саратов, СГУ им. Н.Г. Чернышевского, 1998, 143 с.
- 21. Lange C.W., Pierpont C.G. Inorg. Chim. Acta, 1997, v. 263, p. 219.
- 22. Будников Г.К., Майстренко В.Н., Вяселев М.Р. Основы современного электрохимического анализа. М.: Мир: Бином ЛЗ, 2003, с. 447
- 23. Balch. A.L., Holm R.H. J. Am. Chem. Soc., 1966, v. 88, p. 5201.
- 24. Белоглазкина Е.К., Моисеева А.А., Чураков А.В. и др. Изв. РАН. Сер. хим., 2002, № 3, с. 436.
- 25. Matsumoto K., Fukutomi I., Kinoshita I., Ooi S. Inorg. Chim. Acta, 1989, v. 158, p. 201.
- 26. Herebian D., Ghosh P. e. a. Eur. J. Inorg. Chem., 2002, p. 1957.
- 27. Poddel'sky A.I., Cherkasov V.K., Fukin G.K. e. a. Inorg. Chim. Acta, 2004, v. 357, p. 3632.
- 28. Chun H., Verani C.N., Chaudhuri P. e. a. Inorg. Chem., 2001, 40, p. 4157.
- 29. Verani C.N., Gallert S., Bill E. e. a. Chem. Commun., 1999, p. 1747.
- 30. Jaworski J.S., Kalinowski M.K. Similarity models in organic chemistry, biochemistry and related fields. Ed. R.I. Zalewski, T.M. Krygowski, G. Shorter. Amsterdam: Elsevier, 1991, p. 387-454.
- 31. Zanello P. Inorganic electrochemistry theory, practice and application. Royal Society of Chemistry, 2003, 616 p.
- 32. Parker V.D. J. Am. Chem. Soc., 1974, v. 96, p. 5656.
- 33. Juris A., Balzani V., Barigilleti F. e. a. A von Zelewsky Coord. Chem. Rev., 1988, v. 84, p. 85.
- 34. Pierpont C.G. Coord. Chem. Rev., 2001, v. 99, p. 216-217.
- 35. Pierpont C.G. Ibid., 2001, v. 415, p. 219—221.
 36. Herebian D., Wieghardt K., Neese F. J. Am. Chem. Soc., 2003, v. 125, p. 10997.
- 37. Sun. X., Chun. H., Hildenbrand. K. e. a. Inorg. Chem., 2002, v. 41 (16), p. 4295.
- 38. Robin M.B., Day P. Inorg. Chem. Radiochem., 1967, v. 10, p. 247.
- 39. Eremenko I.L., Nefedov S.E., Sidorov A.A. e. a. J. Organomet. Chem., 1998, v. 551, p. 171.
- 40. Сидоров А.А., Понина М.О., Нефедов С.Е. и др. Ж. неорган. химии, 1997, т. 42, с. 953.
- 41. Талисманова М.О., Фомина И.Г., Сидоров А.А. и др. Изв. РАН. Сер. хим., 2003, № 12, с. 2556.
- 42. Берберова Н.Т., Шинкарь Е.В., Маняшин А.О. и др. Тез. докл. IV Всерос. конф. по химии кластеров «Полиядерные системы и активация малых молекул», Иваново, 25—29 августа 2004 г.
- 43. Берберова Н.Т., Шинкарь Е.В., Охлобыстин А.О. и др. Вестник АГТУ, 2004, № 4 (23), с. 24.