УДК 677.52

Химия и технология минерального волокна

А. Ю. Каминскас

АНТАНАС ЮОЗОВИЧ КАМИНСКАС — доктор технических наук, профессор Института теплоизоляции (VGTU Institute of Thermal Insulation, Литва, Вильнюс). Область научных интересов: свойства, технологии производства и применения теплоизоляционных материалов.

LT-2600, Vilnius, Linkmenu str., 28, VGTU Institute of Thermal Insulation, φακc (370 - 2)75 - 26 - 29, E-mail term 0@aiva.lt

тел. (370 - 2)75 - 00 - 01,

В настоящее время на смену существовавшего обычного понятия о качестве материалов приходит новое. Это интегральное качество, включающее в себя показатели экобаланса изготовления материалов и их утилизации по окончании сроков потребления. Наиболее важными из этих показателей являются энергоемкость и уровень вредных выбросов в окружающую среду на стадии производства, включая добычу и первичную переработку сырья в промежуточные продукты.

В настоящей статье ограничимся рассмотрением интегрального качества искусственного минерального волокна (минеральной ваты) и только на стадии производства, поскольку это наиболее энергоемкая стадия с максимальным уровнем загрязнения окружающей среды. На стадии потребления сроки вредного воздействия растягиваются на нормативную расчетную продолжительность использования указанных материалов (для жилых домов — 80 лет, для промышленных зданий — 30 лет).

Минеральное волокно применяют для изготовления тепло- и звукоизоляционных и звукопоглощающих материалов и изделий для нужд строительства и промышленности. Минеральное волокно получают переработкой расплава природного и техногенного сырья силикатного состава. Пригодность расплава для получения волокна определяется показателями его взаимосвязанных свойств: химическим составом, модулями кислотности и основности, вязкостью, интервалом вязкости и скоростью ее нарастания, поверхностным натяжением.

Энергоемкость получения минерального волокна определяется в основном природой сырьевых материалов, их минералогическим и химическим составом. Магматические горные породы со скрытокристаллической структурой (базальты, диабазы), техногенные отходы со стеклокристаллической структурой (металлургические шлаки) более легкоплавки по сравнению с кристаллическими материалами и материалами осадочного происхождения.

До сих пор исследования влияния химического состава на процессы плавления в большинстве случаев ограничивались изучением тройной системы $SiO_2 - AI_2O_3 - CaO$ с учетом присутствия лишь небольших количеств других оксидов, в том числе MgO. Несмот-

ря на то что в металлургических шлаках содержание оксида магния остается невысоким [1], возрастает интерес исследователей к изучению системы SiO_2 — Al_2O_3 —CaO—MgO с увеличенным содержанием MgO, особенно при высокотемпературных реакциях (в твердофазных реакциях и в расплавах [5-12]).

В четверной системе SiO, -Al, O, -CaO-MgO при существенной замене СаО оксидом магния (до 20 %), наиболее важные изменения структуры происходят в интервале температур 1300—1500 °C. Как в кислых, так в основных расплавах весьма высока разупорядоченность анионной структуры [2-4]. В указанном интервале пригодность кислого расплава для получения минерального волокна определяется вязкостью. Вязкость во многом зависит от размера анионных комплексов, уменьшение которых происходит с увеличением в составе стекла количества CaO, MgO и газообразных компонентов (СО, СО,). Это снижает вязкость расплава при более низких температурах. Однако с понижением температуры повышается склонность расплава к кристаллизации. С энергетической точки зрения замена CaO на MgO должна привести к ускорению возрастания вязкости, так как энергия связи M-O у MgO выше, чем у CaO [2] (154,9 против 133,97 кДж/моль). Однако наблюдается обратный результат. Крупные катионы кальция, являющиеся, по Белову, ведущей строительной единицей структуры стекла, объединяют тетраэдры SiO₄ в группы Si_2O_7 , имеющие меньший размер ребра (0,37 нм), чем кремнекислородные диортогруппы (0,414 нм); они как бы сжимают их, упрочняя и увеличивая тугоплавкость по сравнению с силикатами

Повышение содержания Al_2O_3 за счет уменьшения эквивалентного количества SiO_2 снижает вязкость расплава при 1500 °C, но увеличивает ее при 1300 °C. Причем увеличение массового содержания Al_2O_3 с сохранением исходного количества SiO_2 в пределах этих температур (по достижению 1500 °C) повышает вязкость расплава.

С понижением температуры начинается кристаллообразование и влияние химического состава стекла на вязкость проследить сложнее. Если повышение содержания MgO в расплаве стекла во всех случаях уменьшает вязкость, то влияние CaO на вязкость зависит от температуры расплава и концентрации SiO_2 . При температурах размягчения стекла вязкость повышается у стекол с соотношением $CaO:SiO_2>0,6$ и понижается у стекол с соотношением $CaO:SiO_2<0,6$. С дальнейшим ростом температуры при увеличении количества CaO вязкость во всех случаях снижается.

Сложная зависимость вязкости стекол системы SiO_2 — Al_2O_3 —CaO—MgO от температуры объясняется влиянием структуры стекла.

По Шелудакову вязкость расплавов зависит от анионной структуры расплава и определяется коэффициентом структуры анионов (КСА) — отношением числа атомов кислорода к сумме числа атомов кремния и алюминия $KCA = \Sigma O/(Si + 3/4A1)$.

В кристаллизующихся стеклах такая структурная зависимость сохраняется до начала кристаллизации, а в некристаллизующихся — до значения вязкости 10^2 — $10^{2.5}~\Pi a \cdot c$.

В то же время способность стекол к кристаллизации повышается с ростом КСА и зависит от положения состава стекла на диаграмме состояния. В области кристаллизации форстерита стекла кристаллизуются при КСА равном 2,7, волластонита — 2,9, а в эвтектиках — еще при более высоких значениях.

Кристаллизационная способность стекол зависит и от химического состава расплава. По мере охлаждения кальциевых стекол (поля кристаллизации анортита, волластонита, пироксена) наибольшее влияние на формирование структуры стекла оказывают крупные ионы Ca^{2+} , которые не входят в анионный каркас. Поэтому значительных изменений анионной структуры охлажденного стекла по сравнению с расплавом не происходит.

В расплавах, составы которых расположены в полях кристаллизации мелилита, форстенита и шпинели, из-за повышенного содержания в системе Al_2O_3 и MgO происходит дополнительный переход в кремнекислородный анионный каркас стекла катионов Mg^{2+} и Al^{3+} в четверной координации, причем тетраэдров $[AlO_4]$ тем больше, чем меньше в стекле SiO_2 . В результате в стеклах с содержанием Al₂O₃ 15% (мас.) и более первой выкристаллизовывается более вязкая фаза (ранкинит) и лишь затем — менее вязкая (окерманит). Коодинационный переход Mg²⁺ происходит в стеклах при содержании MgO 10% (мас.) и более при содержании в стекле менее 50% (мас.) стеклообразователя. Встраивание ионов Mg²⁺ кремнекислородную сетку стекла в тетраэдрической координации способствует сохранению ризованной ленточноцепочной структуры, повышая значение энтропии активации вязкого течения и увеличивая гидролитическую стойкость стекла.

С ростом суммарного содержания в стекле SiO_2 и Al_2O_3 до 55-60% (мас.) (поле кристаллизации мелилита, форстерита, шпинели), и особенно при одновременном повышении содержания MgO отклонения изотерм вязкости становятся более значительными, и изотермы искривляются.

Энергия активации вязкого течения в системе SiO_2 — Al_2O_3 —CaO—MgO тоже зависит от химического состава расплава и меняется от 325 до 355 Дж/моль.

Изменение энтропии вязкого течения от 335 до 711,8 Дж/моль свидетельствует, что для охлаждаемых

расплавов характерна ленточная или сеточная структура с появлением цепочечно-сочлененных структурных единиц.

Анализ результатов исследований убедительно свидетельствует о температурной взаимосвязи вязкости стекол системы SiO_2 — Al_2O_3 —CaO—MgO с их химическим составом, положением состава стекла на диаграмме состояния, KCA и энергетическими параметрами вязкого течения. Это следует учитывать при подборе состава шихты, выборе способа плавления и волокнообразования для снижения энергозатрат и получения минерального волокна с высоким интегральным качеством.

В отличие от MgO при любом количестве CaO не становится компонентом стеклообразователя; в результате образуется невлагостойкое стекло, при тонком измельчении которого и добавлении определенных активаторов твердения образуется даже вяжущее вещество [4].

Эти теоретические данные важно знать при практическом использовании магнезиального сырья в производстве минеральной ваты. Они позволяют понять влияние MgO и химического состава в целом на технологические параметры получения волокна, на повышение его гидролитической стойкости и уменьшение энергоемкости за счет снижения температуры получения расплава оптимальной вязкости.

Практическое приложение установленных закономерностей в минераловатном производстве

Волокна из основных и слабокислых расплавов, отвечающих составу доменных шлаков, не являются водостойкими. Поэтому для получения волокна используют искусственные смеси местных сырьевых материалов и отходов производства. В связи с этим границы химического состава шихты в настоящей статье расширены в сторону увеличения содержания SiO_2 , Al_2O_3 и MgO и уменьшения содержания CaO.

Модули кислотности и вязкости.Обычно пригодность сырьевых материалов для получения минеральной ваты рассчитывают по модулю кислотности M:

$$M_{k} = \frac{\operatorname{SiO}_{2} + \operatorname{Al}_{2}\operatorname{O}_{3}}{\operatorname{CaO} + \operatorname{MgO}} \tag{1}$$

Модуль кислотности используется для предварительной оценки химического состава шихты. Для оптимального ее состава $M_{\rm c} > 1,2$, в противном случае сырье непригодно для получения водостойкого волокна. Однако для обеспечения нормальной работы плавильных агрегатов, а также формуемости качественного волокна при оперативном подборе шихты наряду с $M_{\rm c}$ следует учитывать и вязкостные свойства расплава, которые характеризуются модулем вязкости $M_{\rm c}$:

$$M_{B} = \frac{\text{SiO}_{2} + 2\text{Al}_{2}\text{O}_{3}}{2\text{Fe}_{2}\text{O}_{3} + \text{FeO} + \text{CaO} + \text{MgO} + 2\text{Na}_{2}\text{O} + 2\text{K}_{2}\text{O} + \text{MnO} + \text{TiO}_{2} + ...}$$
(2)

Об этом свидетельствуют данные табл. 1 и 2.

По результатам многочисленных исследований и практическому опыту допустимыми считаются значения $M_{\!\!\!<} 1,4.$

Вязкостные характеристики и модули вязкости и кислотности расплава

№ пробы	Состав, %			η Па.с (температура, °С)						
	Al_2O_3	CaO	MgO	1500	1450	1400	1350	1300	1250	
1	5	45	10	0,224	_	_	_	_	_	
2	5	40	15	0,199	0,261	_	_	_	_	
3	5	35	20	0,091	0,264	_	_	_	_	
4	5	30	25	0,190	_	_	_	_	_	
5	10	50	0	0,401	0,523	0,833	_	_	_	
6	10	45	5	0,329	0,460	0,677	1,027	_	_	
7	10	40	10	0,298	0,427	0,640	0,974	_	_	
8	10	35	15	0,262	0,364	0,526	0,831	_	_	
9	10	30	20	0,281	0,378	0,550	0,875	_	_	
10	10	25	25	_	_	_	_	_	_	
11	15	45	0	0,516	0,822	1,323	2,218	4,027	8,580	
12	15	40	5	0,502	0,809	1,189	1,958	3,142	7,136	
13	15	35	10	0,428	0,650	0,997	1,632	2,729	_	
14	15	30	15	0,372	0,533	0,802	1,273	2,207	5,928	
15	15	25	20	0,384	0,555	0,,834	_	_	_	
16	15	20	25	0,330	_	_	_	_	_	
17	20	40	0	0,932	1,369	2,148	3,507	6,756	14,490	
18	20	35	5	0,769	1,126	1,792	2,943	5,550	11,573	
19	20	30	10	0,694	1,004	1,515	2,476	4,430	9,820	
20	20	25	15	0,591	0,847	1,283	2,074	3,529	7,463	
21	20	20	20	0,641	0,770	1,250	_	_	_	
22	25	35	0	1,434	2,170	3,994	6,390	12,82	28,3	
23	25	30	5	1,215	1,829	2,875	4,932	9,846	21,4	
24	25	25	10	1,120	1,535	2,312	3,981	7,526	15,84	
25	30	30	0	2,714	3,950	6,39	12,948	_	_	
26	30	25	5	1,804	3,040	5,137	9,600	_	_	
27	30	20	10	1,469	2,310	3,894	7,018	_	_	

Относительная погрешность рассчитанной вязкости при различных температурах

№ пробы		1500 °C			1450 °C		1400°C		
	Вязкость		Отн.	Вязк	ость	Отн.	Вязкость		Отн.
	Эксперим.	Расчет	ошибка, %	Эксперим.	Расчет	ошибка, %	Эксперим.	Расчет	ошибка, %
1	0,224	0,216	-3,57	_	_	_	_	_	
2	0,199	0,208	+4,52	0,261	0,313	+19,90	_	_	
3	0,191	0,199	+4,18	0,264	0,301	+14,00	_	_	_
4	0,19	0,193	-1,57	_	_	_	_	_	_
5	0,401	0,331	-17,45	0,523	0,499	-4,58	0,833	0,752	-9,72
6	1,329	0,310	-5,77	0,46	0,467	+1,52	0,677	0,705	+14,13
7	0,298	0,292	-2,11	0,427	0,440	+3,04	0,640	0,663	+3,59
8	0,262	0,276	-5,34	0,364	0,416	+14,28	0,526	0,789	+50,00
9	0,281	0,262	-6,76	0,378	0,395	+4,49,	0,550	0,595	-8,18
10	_	_		_	_		_	_	_ '
11	0,516	0,5	-3,10	0,822	0,754	-8,27	1,323	1,136	-14,13
12	0,502	0,458	-8,76	0,809	0,689	-14,83	1,189	1,040	-12,54
13	0,428	0,422	-1,40	0,65	0,635	-2,38	0,997	0,957	-4,01
14	0,372	0,39	+4,83	0,533	0,589	+10,51	0,802	0,888	+10,72
15	0,384	0,364	-5,21	0,555	0,549	-1,08	0,834	0,827	-0.83
16	0,33	0,342	-3,63	_	_	_	_	_	_
17	0,832	0,926	+11,30	1,369	1,369	+1,97	2,148	2,103	-2,09
18	0,769	0,815	+5,98	1,126	1,227	+8,96	1,792	1,849	+3,18
19	0,694	0,724	+4,32	1,004	1,091	+8,66	1,515	1,644	+8,52
20	0,561	0,651	+16,10	0,837	0,981	+17,20	1,283	1,478	+15,19
21	0,41	0,59	+9,05	0,77	0,889	+28,40	1,250	1,340	+7,20
22	1,434	1,676	+16,	2,17	2,524	-16,31	3,994	3,804	-4,75
23	1,215	1,363	+12,20	1,829	2,067	+7,52	2,875	3,101	+7,80
24	1,120	1,165	-4,01	1,535	1,755	+14,33	2,312	2,644	+14,35
25	2,714	3,944	+4,53	3,950	5,941	+50,40	6,939	8,952	+29,01
26	1,894	3,048	+60,9	3,040	4,593	+51,08	5,137	6,920	+34,71
27	1,469	2,424	+65,1	2,310	3,656	+58,26	3,894	5,501	+41,26

Таблица 1

в системе SiO_2 — Al_2O_3 —CaO— $MgO~(SiO_2~-~40%)$

		M	M				
1500	1450	1400	1350	1300	1250	$M_{\scriptscriptstyle m B}$	$M_{\scriptscriptstyle m K}$
0,3502	_	_	_	_	_	0,7203	0,818
0,2989	0,4166	_	_	_	_	1,6974	0,818
0,2810	0,4216	_	_	_	_	0,6756	0,818
0,2788	_	_	_	_	_	0,6553	0,818
0,6031	0,7185	0,9206	_	_	_	0,9556	1,00
0,5172	0,6628	0,8306	1,0114	_	_	0,9196	1,00
0,4742	0,6304	0,8062	0,9886	_	_	0,8861	1,00
0,4183	0,5611	0,7210	0,9196	_	_	0,8553	1,00
0,4478	0,5775	0,7404	0,9420	_	_	0,8263	1,00
_	_	_	_	_	_	0,7993	1,00
0,7126	0,9149	1,1215	1,3459	1,6050	1,9335	1,1839	1,22
0,7007	0,9079	1,0752	1,2917	1,4672	1,8535	1,1347	1,22
0,6314	0,8129	0,9987	1,2127	1,4360	_	1,0889	1,22
0,5705	0,7267	0,9042	1,1048	1,3438	1,7729	1,0474	1,22
0,5843	0,7443	0,9212	_		_	1,0085	1,22
0,5185	_	_	_	_	_	0,9727	1,22
0,9201	1,1363	1,3320	1,4450	1,8297	2,1699	1,5248	1,50
0,8859	1,0514	1,2534	1,4687	1,7443	2,0633	1,4536	1,50
0,8414	1,0016	1,1804	1,3170	1,6464	1,9921	1,3885	1,50
0,7490	0,9227	1,1082	_	1,5476	1,8729	1,3296	1,50
0,7332	0,8865	1,0969	_	_	_	1,2763	15,0
1,1564	1,3365	1,6014	1,8052	2,1079	2,4518	1,8525	1,85
1,0845	1,2621	1,4457	1,6930	1,9933	2,3304	1,7395	1,85
1,0492	1,1861	1,3640	1,6000	1,8765	2,1998	1,6514	1,85
1,4336	1,5966	1,6413	2,1123	_	_	2,3261	2,38
1,2776	1,4829	1,7107	1,9823	_	_	2,1835	2,38
1,1670	1,3636	1,5904	1,8462	_	_	2,0568	2,38

Таблица 2

в системе SiO_2 — Al_2O_3 —CaO— $MgO~(SiO_2~-~40%)$

	1350°C		1300°C			1250°C		
Вязкость		Отн. ошибка,	Вязкость		Отн. ошибка,	Вязкость		Отн. ошиб-
Эксперим.	Расчет	- %	Эксперим.	Расчет	%	Эксперим.	Расчет	- ка, %
_	_	_	_	_	_	_	_	_
_	_	_	_	_	_	_	_	_
_	_	_	_	_	_	_	_	_
_	_	_	_	_	_	_	_	_
_	_	_	_	-	_	_	_	_
1,027	1,061	+3,31	_	_	_	_	_	_
0,974	0,999	-2,56	_	_	_	_	_	_
0,831	0,945	+13,70	_	_	_	_	_	_
0,875	0,886	-2,40	_	_	_	_	_	_
_	_	_	_	_	_	_	_	_
2,218	1,710	-23,10	4,027	2,578	-35,98	8,580	3,886	-54,71
1,958	1,566	-20,03	3,142	2,359	-24,90	7,136	3,554	-50,19
1,632	1,441	-11,70	2,729	2,171	-20,45	_	_	_
1,273	1,338	+5,11	2,207	2,015	-8,69	5,628	3,035	-48,80
_	_	_	_	_	_	_	_	_
_	_	_	_	_	_	_	_	_
3,507	3,169	-9,63	6,756	4,773	-29,30	14,79	7,193	-51,37
2,943	2,787	-6,31	5,550	4,199	-24,30	11,573	6,325	-45,37
2,476	2,475	-0,04	4,430	3,732	+15,75	9,820	5,622	-32,56
2,074	2,227	+7,37	3,529	3,355	-4,93	7,463	5,055	-32,26
				 8,634	-32,65			
4,932	4,672	-3,34	9,846	7,039	-39,88	21,40	10,,600	-50,46
3,981	3,984	+0,07	7,526	6,002	-20,25	15,84	9,042	-43,05
12,948	13,490	+4,17	-,525					
9,60	10,42	+8,54	_		_		_	
7,018	8,287	+15,31	_		_		_	

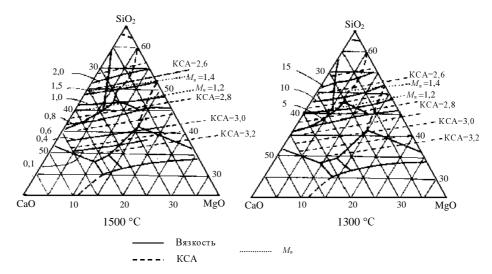


Рис. 1. Изолинии вязкости (Па · c), КСА и $M_{\rm B}$ в системе SiO₂—Al₂O₃—CaO—MgO

На рис. 1 показана взаимосвязь $M_{\rm B}$, КСА и экспериментальных данных о вязкости расплава. Этими данными подтверждена возможность использования $M_{\rm B}$ для расчета шихты в системе SiO₂—Al₂O₃—CaO—MgO. Поскольку изохоммы (изолинии вязкости) построены по экспериментальным данным, КСА и $M_{\rm B}$ в пределах температур 1300—1500 °C сохраняют параллельность.

Данные, приведенные в табл. 1 и 2, а также на рис. 2, свидетельствуют, что расчет шихты по $M_{\rm B}$ можно производить и для четырехкомпонентной системы ${\rm SiO}_2{
m -Al}_2{\rm O}_3{
m -CaO-MgO}$, что имеет большое значение для оптимизации показателей экобаланса и получения волокна высокого качества.

Если расчетные значения $M_{\rm B}$ (см. табл. 1) представить в координатах $M_{\rm B}$ — $\lg\eta$, то получим прямые, которые в общем виде описываются уравнением $\lg\eta = kM_{\rm B} + b$. При понижении температуры с 1500 до 1350 °C прямые сохраняют параллельность с некоторыми отклонениями. На рис. 2 приведены уравнения, которые соответствуют каждой прямой.

Из этих уравнений видно, что при температуре ниже 1350 °С угловой коэффициент k прямых увели-

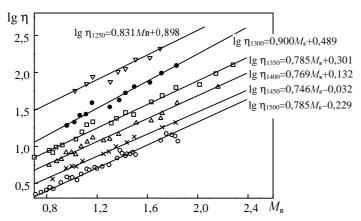


Рис. 2. Зависимость логарифма вязкости от $M_{\rm B}$ при разных температурах (°С)

чивается, т.е. наблюдается отклонение от установленной зависимости. Свободный член уравнений b в зависимости от температуры описывается следующим уравнением:

$$b = -0.00356t + 5.11 \tag{3}$$

где t — температура расплава, °C.

Таким образом, для расчета вязкости можно пользоваться величиной $M_{\rm B}$ по уравнению:

$$\lg \eta = 0.785 M_{\rm B} - 0.00356t + 5.11 \tag{4}$$

Гидролитическая стойкость (водостойкость) минерального волокна оценивается по показателю водостойкости $\Pi_{\rm pH}$, который определяется по следующей методике [13, 14].

Отобранная средняя проба в количестве 15—20 г растирается в электромеханической ступке. Полграмма такого просеянного через сито № 00,5 порошка, взвешенного на аналитических весах с точностью до 0,001 г, переносится в стакан емкостью 150 см³, смачивается несколькими каплями этилового спирта до влажного состояния и заливается 100 см³ 0,01%-го раствора хлорводородной кислоты. Время заливания пробы фиксируется 10-минутными песочным часами.

В тот же стакан опускается стержень электромеханической мешалки и электроды рH-метра. Включается мешалка и, по истечении 10 мин записывается значение рH. Водостойкость $\Pi_{\rm pH}$ минеральной ваты оценивается по среднему арифметическому трех измерений рH.

Эту методику можно использовать для контроля качества продукции, выпускаемой предприятиями. Из разных частей минераловатного ковра или изделия отбирается средняя проба в количестве 50—100 г. Часть такой пробы (15—20 г) помещается в фарфоровую чашку и прокаливается в муфельной печи при 600 °С в течение 15 мин для полного удаления замасливателя или связующего. Прокаленная проба размельчается и определяют рН по описанной выше методике.

Показатель водостойкости Π_{pH} можно не только экспериментально определить, но и

рассчитать, исходя из химического состава волокна по эмпирической формуле:

$$\begin{array}{l} \Pi_{\rm pH} = -0.121{\rm SiO_2} + 0.581{\rm Al_2O_3} + 0.171{\rm Fe_2O_3} + \\ + 0.240{\rm CaO} + 0.932{\rm MgO} - 0.00405{\rm SiO_2} \cdot {\rm Al_2O_3} - \\ - 0.00266{\rm SiO_2} \cdot {\rm Fe_2O_3} + 0.002098{\rm SiO_2} \cdot {\rm CaO} - \\ - 0.00833{\rm SiO_2} \cdot {\rm MgO} + 0.00697{\rm Al_2O_3} \cdot {\rm Fe_2O_3} - \\ - 0.0146{\rm Al_2O_3} \cdot {\rm CaO} - 0.0327{\rm Al_2O_3} \cdot {\rm MgO} - \\ - 0.00457{\rm Fe_2O_3} \cdot {\rm CaO} - 0.000852{\rm Fe_2O_3} \cdot {\rm MgO} - \\ - 0.00411{\rm CaO} \cdot {\rm MgO} \end{array} \tag{5}$$

Верхний предел (максимальное количество) кислого компонента в составе шихты определяется по величине модуля вязкости расплава (в том случае, если предварительно рассчитанный $M_{\rm K} > 1,2$). С ростом модуля вязкости (выше 1,4) повышается водостойкость и увеличивается длина волокна, но и увеличивается вязкость расплава. В результате либо снижается производительность плавильных агрегатов и увеличивается диаметр волокна, либо существенно повышается температура плавления и энергозатраты. Поскольку модуль кислотности $M_{\scriptscriptstyle K}$ не характеризует вязкость расплава, необходимо руководствоваться вязкости $M_{\rm R}$. Однако его предельное значение не должно превышать 1,4. По значению этого модуля расплавы можно распределить на три вида: длинные, $M_{\rm B}=1,3\div1,4$; средние $M_{\rm B}=1,2\div1,3$; короткие $M_{\rm B}<1,2$.

Таким образом, расчет состава шихты для производства минеральной ваты из двухкомпонентной шихты определяется по трем показателям: модулям кислотности и вязкости, а также показателю водостойкости волокна ($\Pi_{\rm pH}$). Показатели $M_{\rm K}$ и $M_{\rm B}$ для двухкомпонентной шихты можно рассчитать по химическому составу основного и кислого компонентов при заданных $M_{\rm K}$ и $M_{\rm B}$:

$$M_{K} = \frac{(\text{SiO}'_{2} + \text{Al}_{2}\text{O}'_{3})x + (\text{SiO}''_{2} + \text{Al}_{2}\text{O}''_{3})(1 - x)}{(\text{CaO}' + \text{MgO}')x + (\text{CaO}'' + \text{MgO}'')(1 - x)}$$
(6)

$$M_{\rm B} = [(M'_{\rm SiO_2} + 2 M'_{\rm Al_2O_3})x + (M''_{\rm SiO_2} + 2 M''_{\rm Al_2O_3})(1-x)]/$$

$$/[(2 M'_{\rm Fe_2O_3} + M'_{\rm CaO} + M'_{\rm MgO} + ...)x + (2 M''_{\rm Fe_2O_3} +$$

$$+ M''_{\rm CaO} + M''_{\rm MgO} + ...)(1-x)]$$
(7)

где SiO'_2 , $\mathrm{Al}_2\mathrm{O}'_3$, CaO' — процентное содержание данных оксидов в кислом компоненте; SiO''_2 , $\mathrm{Al}_2\mathrm{O}''_3$, CaO'' — в основном компоненте; $\mathrm{Al}_2\mathrm{O}_3$, MgO — процентное содержание данных оксидов в минеральной вате; M'_{SiO_2} , $M'_{\mathrm{Al}_2\mathrm{O}_3}$ — молярное содержание данных оксидов в кислом компоненте; M''_{SiO_2} , $M''_{\mathrm{Al}_2\mathrm{O}_3}$ — в основном компоненте; x — доля кислого компонента в составе шихты.

По значениям $M_{\rm K}$, $M_{\rm B}$ и $\Pi_{\rm pH}$ можно построить номограммы для любого процентного содержания MgO в шихте.

Рентгенографическими исследованиями установлено, что повышение гидролитической стойкости минерального волокна с высоким содержанием MgO и Al_2O_3 связано с переходом расплава в область кристаллизации мелилита и диопсида.

Как видно из рис. 3, увеличение содержания MgO за счет соответствующего сокращения количества CaO в изучаемых пределах температур не только повышает показатель водостойкости ($\Pi_{\rm pH}$), но и расширяет границы варьирования химического состава шихты и пределы гидролитической стойкости минеральной ваты в сторону более низких значений $M_{\rm K}$ и $M_{\rm B}$. Так, при содержании MgO в шихте в пределах 10-20% минеральное волокно, отвечающее требованиям высшего класса по долговечности (pH < 5), можно получить уже при $M_{\rm K}=1,15+1,20$.

Влагостойкость минеральной ваты обычно достигается путем увеличения $M_{\rm K}$, что приводит к увеличению энергозатрат, ухудшению экобаланса производства, т.е. к ухудшению интегрального качества волокна. Более эффективный путь решения этой проблемы — введение в химический состав волокна оксида магния. Поэтому в качестве базового компонента шихты лучше использовать доломиты, засоренные теригенными оксидами, либо другие содержащие MgO породы, либо силикаты магния в качестве кислого компонента.

Использование минеральных вяжущих в качестве связующего минераловатных изделий и композиций

Синтетические связующие заняли в минераловатном производстве ведущее место. Однако для специальных целей — использование их в пожароопасных участках зданий, а также при утеплении высокотемпературных поверхностей — синтетические связующие применяют ограничено. Применение же минеральных связующих затруднено из-за их хрупкости и возможного химического воздействия на волокна при увлажнении

Тем не менее офактуривание поверхностей жестких изделий возможно, если совместить процесс отверждения синтетического связующего и твердение фактурного слоя.

Для получения особо жестких минераловатных плит на синтетическом связующем, пригодных для офактуривания минеральными вяжущими, разработана и испытана в производственных условиях малоэнергоемкая, принципиально новая технология и оборудование — контактный нагрев изделий методом

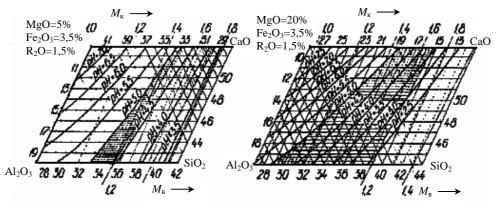


Рис. 3. Номограммы составлены по величинам $M_{\scriptscriptstyle B}$, $M_{\scriptscriptstyle K}$ и $\varPi_{\scriptscriptstyle pH}$. Площади, отвечающие требованиям качества ($R_{\scriptscriptstyle pH}$), заштрихованы

горячего прессования вместо продувания через твердеющие изделия горячих газов (~200—220 °C). По этому способу минераловатный ковер формуется и пронытивается синтетическим связующим по обычной технологической схеме, затем разрезается на заготовки 2х3÷4 м (в зависимости от величины прессующих поверхностей многоэтажного пресса). Минераловатные заготовки офактуриваются слоем минерального вяжущего, поступают в нагретый до ~200 °C многоэтажный пресс и в обжатом состоянии выдерживаются в течение 40—60 мин в зависимости от температуры нагретых прессующих поверхностей и толщины изделий.

Продолжительность нагрева сухих минераловатных плит контактным способом до определенной температуры можно рассчитать по уравнению:

$$\tau = \left(\frac{2\delta'}{\pi}\right)\frac{1}{\alpha}\ln\left(\frac{4}{\pi}\cdot\frac{1}{\theta_{x=0}}\right) \tag{9}$$
 Для влажных плит с определенным количеством

Для влажных плит с определенным количеством воды (W, %) время горячего прессования увеличивается и может быть рассчитано по формуле:

$$\tau = \left(\frac{28}{\pi}\right) \frac{1}{\alpha} \ln \left(\frac{4}{\pi} \cdot \frac{1}{\theta_{x=0}}\right) \Sigma (0.506 - 1.732 \cdot 10^{-3} \cdot t_{x=0})^{W, \%}$$
 (10)

где т — продолжительность нагрева, ч; δ' — 0,5 толщины минераловатной плиты, м; α — коэффициент

температуропроводности, $\alpha = \frac{\lambda}{c \cdot \gamma}$; γ — масса минера-

ловатной заготовки, кг/м
2
; $\theta_{\chi=0}=\frac{t_{\chi=0}-t_{\rm np}}{t_0-t_{\rm np}}$ безразмер-

ная температура; λ — теплопроводность, $B \tau / m K$; t_0 — начальная температура, °C; $t_{x=0}$ — температура среднего по толщине слоя, °C; t_{np} — температура прессования (греющих металлических плит пресса), °C.

Сильное увлажнение заготовок перед горячим прессованием нежелательно, поэтому на них можно наносить только тонкие слои вяжущего, которые, соприкасаясь с нагретыми поверхностями, подвергаются интенсивному твердению и высыханию. Вследствие высокой основности многие известные минеральные вяжущие является не пригодными для этих целей еще и потому, что для их твердения нужна влажная среда. Строительный гипс нельзя использовать из-за слишком высокой температуры прессования. Его применяют лишь для изготовления изделий, твердеющих при температуре, не превышающей 100 °C.

Представляют интерес высокие технологии получения минеральных вяжущих с модифицированными кристаллическими структурами продуктов путем внедрения в структуру гидроксидов анионов некоторых электролитов, образующих твердые растворы с большим искажением кристаллической решетки и изменением кинетики гидратации. Такими свойствами обладает магнезиальное вяжущее (MgO, каустический доломит).

При этом следует отметить, что при их затворении растворами магнезиальных солей (MgCl₂, MgSO₄) образующиеся гидрооксихлориды магния при повышении температуры тепловой обработки выше 160 °C деструктируют и переходят в ангидридную форму. Этого не происходит, если ОН-группы кристалла гидроксида частично замещаются более крупными анионами. В результате увеличивается параметр c кристаллической решетки от $0.5438\,\mathrm{km}$ для $\mathrm{Mg}(\mathrm{OH})_2$ до $0.5699\,\mathrm{km}$ для $\mathrm{[Mg}(\mathrm{OH})_{1.88}\cdot\mathrm{Cl}_{0.12}]\cdot\mathrm{H}_2\mathrm{O}$, а межпротон-

ные расстояния, определенные методом сравнения теоретических и экспериментальных значений вторых моментов линии поглощения ΠMP (протонного магнитного резонанса) увеличиваются от 0,238 до 0.286 нм [2].

Более устойчивы при тепловой обработке гидрооксисульфаты магния. Однако дегидратация их также начинается при $160\,^{\circ}\mathrm{C}$, но проходит она медленно, с образованием низких форм оксисульфатов. Твердые растворы гидроксида магния с включенными ионами сульфата предельного состава $[\mathrm{Mg}(\mathrm{OH})_{1,86}(\mathrm{SO_4})_{0,07}] \cdot 0,23\mathrm{H}_2\mathrm{O}$ начинают деструктировать только выше $180\,^{\circ}\mathrm{C}$.

Известно, что дегидратация несквегонита происходит в три стадии — при 180, 225 и 345 °С, поэтому температуру тепловой обработки изделий на этапе затворения каустического доломита повышают до 180 °С, т.е. для нагрева пресса можно использовать водяной пар с параметрами, принятыми при обычной термической обработке автоклавных строительных материалов (174,5 °С).

Использование каустического доломита, затворенного суспензией несквегонита (MgCO $_3$ · $3H_2O$), образующегося путем карбонизации молока доломитовой извести, или каустического магнезита является наиболее приемлемым решением. Несквегонит с оксидом магния при его гидратации образует твердые растворы предельного состава [Mg(OH) $_{1,93}$ (CO $_3$) $_{0,035}$] · $0,12H_2O$, и способствует уплотнению материала вследствие перекристаллизации с переходом при нагревании в гидромагнезит (4MgCO $_3$ · Mg(OH) $_2$ · $4H_2O$).

Фазовый анализ показал, что в случае добавления к каустическому доломиту 5% несквегонита при горячем прессовании твердение происходит с образованием твердых растворов и гидромагнезита в результате интенсивной гидратации MgO. Свойства и фазовые превращения несквегонита, а также его влияние на гидратацию MgO подробно рассмотрены в монографии [2], значительная часть которой посвящена химии и технологии доломита и оксида магния.

ЛИТЕРАТУРА

- 1. *Soudee E., Pera J.* Cement and Concrete Research, 2002, № 12, p. 153—157.
- 2. Kaminskas A. In: Energiją tausojančios statybinių medžiagų technologijos. Vilnius, 2002, p. 140—209.
- 3. Артельных В.Г. Автореф. дисс. Минск, 1979, 22 с.
- 4. Mataitien L., Kaminskas A. Cheminė technologija, 1999, № 3, p. 5.
- 5. Ali M.M., Mullick A.K. Cem. and Conc. Res., 1998, v. 28, p. 1585.
- 6. Cheng Y., Kupfer H., e.a. Appl. Surf. Sci., 2002, v. 200, p. 117.
- 7. Altum A., Yilnaz J. Cem. and Conc. Res., 2002, v. 32, p. 1247—1249.
- 8. Winter W., Berger A., Müller G., Pannhost W. J. European ceram. Soc., 1995, v. 15, p. 56—70.
- 9. Sarkar R., Banerjee G. Ibid., 1999, v. 19, p. 2893-2899.
- 10. Kerienė J., Smolianskienė G., Kaminskas A., Špokauskas A. Chemin technologija, 1999, № 3(12), p. 36–45.
- 11. *Kerienė J., Kaminskas A., Špokauskas A.* Ibid., 1999, № 3(12), p. 22.
- 12. Бирмантас И., Каминскас А., Эйдукевичюс К. Мат. совещания: Пути совершенствования плавильных агрегатов в производстве минеральной и стеклянной ваты. Вильнюс, 28—29 октября 1971. Вильнюс, ВНИИтеплоизолящия, 1981, с. 11—19.
- 13. Бирмантас И., Эйдукевичюс К. В сб.: Новый критерий оценки химического состава минеральной ваты. Вильнюс, ВНИИтеплоизоляция, 1971, вып. 5, с. 64—78.
- Бирмантас И. Новые методы определения качества минерального сырья минеральной ваты и расчета состава шихты. Вильнюс, 1983.