

Xapa Молек pН рК (глю Раствор Критич мицелл

			Метрологические хара					Таблица 1 ров сапонина	
			Градуировочные кривые		r ²	ε, %	Предел обнаружения сапонинов, мг/мл	Рабочий диапазон концентрации сапонинов, мг/ мл	
			9,56±1,59)C+0,014 (1)	0,2	0,998	7,0	0,0017	0,0025-0,05	
		I	D=(2,04±0,04)C (2)	1,2	0,999	8,1	0,0063	0,01-0,50	
a Quillaja Saponaria Molina			Физико-химическ	ие харак	теристи	ки пори	стой структуры ОУ	Таблица 3 -А и БАУ-А	
	Таблица 2		Марка угля				ОУ-А	БАУ-А	
стеристики тритерпенового сапонина [2-3]			Площадь поверхности:						
лярная масса, г/моль	2321		Суммарная, S $_{\Sigma}$,м $^{2}/\Gamma$	Г			805	915	
куроновая кислота)	3,18		Мезопор, S _{ме} м ² /г				138	50-60	
имость, мг/мл H ₂ O	40	Объем пор, см ³ /г:							
еская концентрация робразования, ммоль/дм ³	0.26		Объем микропор, V _{ми}				0,26	0.25-0.39	
1 ,	0,20 =		Объем мезопор, V _{ме}				0,27	0.08	
	1	Объем макропор, V _{ма}				1,78	0.19-0.21		
			Суммарный объем	пор, V _s			2,38	1,1-2,16	
		0	бсуждение результа	TOP	5)		10 Con	

Установлено, что ход кинетических кривых был идентичен обоих марок углей и определялся преимущественно ассоциативни нениями в растворе гликозида. Сорбционные кривые имеют своеобразный ступенчатый характер. В начальный промежуток времени заполняются наиболее доступные и энергетически выгодные участки поверхности. Дальнейшее увеличение времени контакта к плотному заполнению микрои макропор угля с ием насы щенного адсорбционного слоя.

Рис. 4. Кинетические кривые сорбции сапонина активированным углём марки: (1) - ОУ – А, (2) - БАУ-А, концентрация сапонина – 0,1 мг/мл.

Для рассматриваемых сорбентов можно говорить, что равновесие наступает от 2,3 до 3,5 часов. Одним из факторов, непосредственно влияющих на скорость установления равновесия и величину сорбционного параметра, является изменение механизма удерживания сапонина в фазе сорбента в диапазоне концентраций, соответствующих ассоциативным процессам в растворе.

В основе механизма взаимодействия молекул сапонин углеродным сорбентом лежат дальнодействующие гидрофобные силы, возникающие, в том числе, и между молекулами мицеллообразующих веществ. Эти силы, обусловливают ассоциацию молекул сапонинов и одновременное их притяжение к гидрофобной поверхности [4].

Из изотермы сорбции может быть найдена предельная адсорбция Q∞, и легко вычислить поверхность адсорбента ω'М (в нм²), экранируемую одной молекулой ПАВ, которая входит в состав

 $-S_{\alpha} \cdot 1.0^{18} \cdot 0.7815 / (Q_{\alpha} \cdot N_{A})$ eu_{na} удельная поверхность адсорбента, м²/к - число нм² в 1 м² отношение площади окружности

(плошал ечения сфероидальной квадрата, учитывающе экваториального ĸ мицеллы) ающего ее учитывающее характер «упак поверхностных ассоциатов; адсорб

измеренная по учас Q_т — предельная удельна плато на изотерме адсорбции при концентрациях, превышающих КК

абобоборана и поставите и поставит 1,067 · 6,022 · 1.0²⁸

Из рисунка видно, что длин иолекулы агликона (квиллайс кислоты), рассчита программой Cambridge Soft (кислоты Ultra 2010 v12.0 3D Office моделирования формул равна 9,8 Å (0,98нм таким образом, полученные подтверждают

расчетов длины агликона и площади сорбента, езультаты одной молекулой сорбата, подтверждают экранируемой предположение о пространственной ориентации сапонина на углеродного материала, а также о возникающих взаимодей<mark>ствиях [</mark>5]. Увеличение адсорбции при поверхности гидрофобных С>ККМ1 может быть также следствием образования большого числа трехмерных ассоциатов в адсорбционном слое, которое отражает образование объемных ассоциатов молекул ПАВ в растворе.

d Chemistry, 1997. № 45. Р. 1587 -1595. 3. M 4. A